检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
映射规则:当前不支持CPU配置cache盘;GPU与昇腾资源为单卡时,cache目录保持500G大小限制;除单卡外,cache盘大小与卡数有关,计算方式为卡数*500G,上限为3T。详细表1所示。 表1 不同Notebook规格资源“/cache”目录的大小 规格类别 cache盘大小
数据直接从一台计算机的内存传输到另一台计算机。 RoCE:RDMA over Converged Ethernet(RoCE)是一种网络协议,允许应用通过以太网实现远程内存访问。 IB:InfiniBand (IB) 是一种高性能计算机网络通信协议,专为高性能计算和数据中心互连设计。
fp16/bf16 true 使用混合精度格式,减少内存使用和计算需求。二者选其一 learning_rate 2.0e-5 指定学习率 disable_gradient_checkpointing true 关闭重计算,用于禁用梯度检查点,默认开启梯度检查点;在深度学习模型训练中
推理部署功能模块涉及到的用户模型文件和发布到AIGallery的资产在上传过程中,有可能会因为网络劫持、数据缓存等原因,存在数据不一致的问题。ModelArts提供通过计算SHA256值的方式对上传下载的数据进行一致性校验。 数据隔离机制 在ModelArts的开发环境中创建Notebook实例时,数据存储是按照租户隔离,租户之间互相看不到数据。
ModelArts通过OBS的API访问OBS中的文件,属于内网还是公网访问? 在同一区域,ModelArts通过OBS的API访问OBS中的文件属于内网通信,不消耗公网流量费。 如果是通过互联网从OBS下载数据到本地,这时候会产生OBS公网流量费。OBS的详细计费说明可以参见计费项。
算法训练和调测 “GPU: 1*Tnt004(16GB)|CPU: 8核* 32GB”: GPU单卡规格,16GB显存,推理计算最佳选择,覆盖场景包括计算机视觉、视频处理、NLP等 “GPU: 1*Pnt1(16GB)|CPU: 8核 64GB”:GPU单卡规格,16GB显存,适合深度学习场景下的算法训练和调测
fp16/bf16 true 使用混合精度格式,减少内存使用和计算需求。二者选其一 learning_rate 2.0e-5 指定学习率 disable_gradient_checkpointing true 关闭重计算,用于禁用梯度检查点,默认开启梯度检查点;在深度学习模型训练中
fp16/bf16 true 使用混合精度格式,减少内存使用和计算需求。二者选其一 learning_rate 2.0e-5 指定学习率 disable_gradient_checkpointing true 关闭重计算,用于禁用梯度检查点,默认开启梯度检查点;在深度学习模型训练中
参数 参数类型 描述 create_at Long 实例创建的时间,UTC毫秒。 duration Long 实例运行时长,以创建时间为起点计算,即“创建时间+duration > 当前时刻”时,系统会自动停止实例。 enable Boolean 是否启用自动停止功能。 type String
限”。此时所有用户都将被删除。 添加所有者:在同一窗口中,单击“添加”,在弹出的新窗口中,单击“主体”后面的“选择主体”,弹出“选择用户,计算机,服务账户或组”窗口,单击“高级”,输入用户名, 单击“立即查找”按钮,显示用户搜索结果列表。 选择您的用户账户,然后单击“确定”(大约四个窗口)以关闭所有窗口。
可根据默认选择,或进行自定义。创建完成后,单击“远程登录”,后续安装Docker等操作均在该ECS上进行。 注意:CPU架构必须选择鲲鹏计算,镜像推荐选择EulerOS。 图1 购买ECS Step2 创建镜像组织 在SWR服务页面创建镜像组织。 图2 创建镜像组织 Step3
可调整参数:SEQ_LEN要处理的最大的序列长度(seq-length),参数值过大很容易发生显存溢出的错误。 可添加参数:在3_training.sh文件中添加开启重计算的参数。其中recompute-num-layers的值为模型网络中num-layers的参数值。 --recompute-granularity
可调整参数:SEQ_LEN要处理的最大的序列长度(seq-length),参数值过大很容易发生显存溢出的错误。 可添加参数:在3_training.sh文件中添加开启重计算的参数。其中recompute-num-layers的值为模型网络中num-layers的参数值。 --recompute-granularity
可调整参数:SEQ_LEN要处理的最大的序列长度(seq-length),参数值过大很容易发生显存溢出的错误。 可添加参数:在3_training.sh文件中添加开启重计算的参数。其中recompute-num-layers的值为模型网络中num-layers的参数值。 --recompute-granularity
可调整参数:SEQ_LEN要处理的最大的序列长度(seq-length),参数值过大很容易发生显存溢出的错误。 可添加参数:在3_training.sh文件中添加开启重计算的参数。其中recompute-num-layers的值为模型网络中num-layers的参数值。 --recompute-granularity
可调整参数:SEQ_LEN要处理的最大的序列长度(seq-length),参数值过大很容易发生显存溢出的错误。 可添加参数:在3_training.sh文件中添加开启重计算的参数。其中recompute-num-layers的值为模型网络中num-layers的参数值。 --recompute-granularity
可调整参数:SEQ_LEN要处理的最大的序列长度(seq-length),参数值过大很容易发生显存溢出的错误。 可添加参数:在3_training.sh文件中添加开启重计算的参数。其中recompute-num-layers的值为模型网络中num-layers的参数值。 --recompute-granularity
可调整参数:SEQ_LEN要处理的最大的序列长度(seq-length),参数值过大很容易发生显存溢出的错误。 可添加参数:在3_training.sh文件中添加开启重计算的参数。其中recompute-num-layers的值为模型网络中num-layers的参数值。 --recompute-granularity
可调整参数:SEQ_LEN要处理的最大的序列长度(seq-length),参数值过大很容易发生显存溢出的错误。 可添加参数:在3_training.sh文件中添加开启重计算的参数。其中recompute-num-layers的值为模型网络中num-layers的参数值。 --recompute-granularity
可调整参数:SEQ_LEN要处理的最大的序列长度(seq-length),参数值过大很容易发生显存溢出的错误。 可添加参数:在3_training.sh文件中添加开启重计算的参数。其中recompute-num-layers的值为模型网络中num-layers的参数值。 --recompute-granularity