检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
pip介绍及常用命令 pip常用命令如下: pip --help#获取帮助 pip install SomePackage==XXXX #指定版本安装 pip install SomePackage #最新版本安装 pip uninstall SomePackage #卸载软件版本
查询onnx模型的输入信息。 # 查询onnx模型的输入信息 t.get_model_input_info() 图1 查询onnx模型的输入输出信息 查询onnx模型的输出信息。 # 查询模型的输出信息 t.get_model_output_info() 图2 查询onnx模型的输出信息
权限。 背景信息 ModelArts的用户需要为不同的业务目标开发算法、管理和部署模型,此时可以创建多个工作空间,把不同应用开发过程的输出内容划分到不同工作空间中,便于管理和使用。 基于工作空间可以实现资源逻辑隔离、资源配额管理、细粒度鉴权和资源清理能力。工作空间组件可以将Mod
获取用户名和用户ID 在调用接口的时候,部分请求中需要填入用户名(user name)和用户ID(user_id)。获取步骤如下: 注册并登录管理控制台。 鼠标移动至用户名,在下拉列表中单击“我的凭证”。 在“API凭证”页面,查看“IAM用户名”和“IAM用户ID”。 图1 获取用户名和ID
专属资源池 专属资源池的费用已在购买时支付,运行自动学习作业和Workflow工作流时不再收费。 专属资源池的费用请参考专属资源池计费项。 - - 存储资源 对象存储OBS 用于存储训练和推理的输入数据和输出结果数据。 具体费用可参见对象存储价格详情。 注意: 存储到OBS中的数据需在OB
clone私有仓库和git push文件时会出现如下报错: 原因分析 原因为Github已取消密码授权方式,此时在git clone私有仓库和git push文件时需要在授权方式框中输入token。 解决方案 使用token替换原先的密码授权方式,在git clone私有仓库和git p
Megatron-DeepSpeed是一个基于PyTorch的深度学习模型训练框架。它结合了两个强大的工具:Megatron-LM和DeepSpeed,可在具有分布式计算能力的系统上进行训练,并且充分利用了多个GPU和深度学习加速器的并行处理能力。可以高效地训练大规模的语言模型。 Megatron-LM是
查询ModelArts的消费详情。本章节以查询“账单详情”为例指导您查看计费情况,如需了解更多的账单情况,请参见查看费用账单。 查询方法: 单击右上方的“费用中心 > 费用账单”进入费用中心详情页面,在左侧导航栏选择“账单管理 > 流水和明细账单”,在流水和明细账单页面,可切换“
准备代码 本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包和权重文件 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表2所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6
在ModelArts自动学习中模型训练图片异常怎么办? 使用自动学习的图像分类或物体检测算法时,标注完成的数据在进行模型训练后,训练结果为图片异常。针对不同的异常情况说明及解决方案参见表1。 表1 自动学习训练中图片异常情况说明(图像分类和物体检测) 序号 图片异常显示字段 图片异常说明 解决方案字段
该资产的标题、封面图、描述等,让资产更吸引人。 修改封面图和二级标题 在发布的资产详情页面,单击右侧的“编辑”,选择上传新的封面图,为资产编辑独特的主副标题。 编辑完成之后单击“保存”。封面图和二级标题内容自动同步,您可以直接在资产详情页查看修改结果。 图1 修改封面图和二级标题
本方案支持的软件配套版本和依赖包获取地址如表1所示。 表1 软件配套版本和获取地址 软件名称 说明 下载地址 AscendCloud-6.3.911-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的推理部署代码和推理评测代码、推理依赖的算子包。代码包具体说明请参见模型软件包结构说明。
获取项目ID和名称 操作场景 在调用接口的时候,部分请求中需要填入项目ID或项目名称,所以需要获取到项目ID和名称。有如下两种获取方式: 从控制台获取项目ID和名称 调用API获取项目ID 从控制台获取项目ID和名称 从控制台获取项目ID(project_id)和名称(project
Notebook实例中的数据或代码文件存储在OBS中。 训练模型 训练作业使用的数据集存储在OBS中。 训练作业的运行脚本存储在OBS中。 训练作业输出的模型存储在指定的OBS中。 训练作业的过程日志存储在指定的OBS中。 模型管理 训练作业结束后,其生成的模型存储在OBS中,创
此时可以进入debug模式,代码运行暂停在该行,且可以查看变量的值。 图9 Debug模式 使用debug方式调试代码的前提是本地的代码和云端的代码是完全一致的,如果不一致可能会导致在本地打断点的行和实际运行时该行的代码并不一样,会出现意想不到的错误。 因此在配置云上Python Interp
Notebook实例中的数据或代码文件存储在OBS中。 训练模型 训练作业使用的数据集存储在OBS中。 训练作业的运行脚本存储在OBS中。 训练作业输出的模型存储在指定的OBS中。 训练作业的过程日志存储在指定的OBS中。 AI应用管理 训练作业结束后,其生成的模型存储在OBS中,
准备代码 本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包和权重文件 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表2所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-3rdLLM-6
多模态模型推理性能测试 多模态模型推理的性能测试目前仅支持静态性能测试。 静态性能测试是指评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 性能benchmark验证使用到的脚本存放在代码包AscendCloud-LLM-xxx
静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 性能benchmark验证使用到的脚本存放在代码包AscendCloud-LLM-xxx.zip的llm_tools/llm_evaluation目录下。
静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 性能benchmark验证使用到的脚本存放在代码包AscendCloud-LLM-xxx.zip的llm_tools/llm_evaluation目录下。