检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
物联网时序数据分析 物联网时序数据分析场景介绍 手动将CSV离线数据导入至IoTDB 使用HetuEngine查询IoTDB时序数据 使用Grafana对接IoTDB数据库 父主题: 数据分析
物联网时序数据分析场景介绍 在物联网场景中,海量设备采集的数据需要进行低延迟的高效接入、存储和分析,数据具有高度的时间属性相关特点,传统数据库基于二维表的数据模型,无法满足物联网场景下高效的时序数据存储和分析需求。时序数据库则是专门针对物联网时序数据场景设计的存算引擎,数据按设备
量、安全、高可靠、低成本的数据存储能力。MRS可以直接处理OBS中的数据,客户可以基于OBS服务Web界面和OBS客户端对数据进行浏览、管理和使用,同时可以通过REST API接口方式单独或集成到业务程序进行管理和访问数据。 数据存储在OBS:数据存储和计算分离,集群存储成本低,
on启动的第一个容器。它负责和ResourceManager打交道并请求资源,获取资源之后告诉NodeManager为其启动Container。从深层次的含义讲YARN-Cluster和YARN-Client模式的区别其实就是ApplicationMaster进程的区别。 YAR
tor和oracle-connector具有以下优点: 负载均匀,数据分片的个数和范围与源表的数据无关,而是由源表的存储结构(数据块)确定,颗粒度可以达到“每个数据块一个分区”。 性能稳定,完全消除“数据偏斜”和“绑定变量窥探”导致的“索引失效”。 查询速度快,数据分片的查询速度比用索引快。
图2展示了使用IoTDB套件的全部组件形成的整体应用架构,IoTDB特指其中的时间序列数据库组件。 图2 IoTDB结构 用户可以通过JDBC/Session将来自设备传感器上采集的时序数据和服务器负载、CPU内存等系统状态数据、消息队列中的时序数据、应用程序的时序数据或者其他数据库中的时序数据导
景,对存储数据进行预计算和存储,提升分析场景的性能。针对时序数据特征,进行强有力的数据编码和压缩能力,同时其自身的副本机制也保证了数据的安全,并与Apache Hadoop和Flink等进行了深度集成,可以满足工业物联网领域的海量数据存储、高速数据读取和复杂数据分析需求。 IoTDB结构
用户可以通过JDBC/Session将来自设备传感器上采集的时序数据和服务器负载、CPU内存等系统状态数据、消息队列中的时序数据、应用程序的时序数据或者其他数据库中的时序数据导入到本地或者远程的IoTDB中。用户还可以将上述数据直接写成本地(或位于HDFS上)的TsFile文件。 用户可以将TsFi
Hive服务健康状态和Hive实例健康状态的区别 问题现象 Hive服务健康状态和Hive实例健康状态的区别是什么? 解决方案 Hive服务的健康状态(也就是在Manager界面看到的健康状态)有Good,Bad,Partially Healthy,Unknown四种状态 ,四种
value=false; 例如,关联查询的数据如下: 图15 关联查询IoTDB和Hive+HBase表数据 本示例中的关联查询的关键key是“D_ID”,在IoTDB中是通过tag实现的。例如,d1设备的所有测量值设置的标签为tag1=d00000001,d2设备的所有测量值设置的标签为tag1=d00000002,依次类推。
tor和oracle-connector具有以下优点: 负载均匀,数据分片的个数和范围与源表的数据无关,而是由源表的存储结构(数据块)确定,颗粒度可以达到“每个数据块一个分区”。 性能稳定,完全消除“数据偏斜”和“绑定变量窥探”导致的“索引失效”。 查询速度快,数据分片的查询速度比用索引快。
vehicle”路径下增加了新的设备,也将属于该存储组。 设置合理数量的存储组可以带来性能的提升。既不会因为产生过多的存储文件(夹)导致频繁切换IO降低系统速度(并且会占用大量内存且出现频繁的内存-文件切换),也不会因为过少的存储文件夹(降低了并发度)导致写入命令阻塞。 用户应根据自己的数据规模和使用场
IoTDB是针对时间序列数据收集、存储与分析一体化的数据管理引擎。它具有体量轻、性能高、易使用的特点,支持对接Hadoop与Spark生态,适用于工业物联网应用中海量时间序列数据高速写入和复杂分析查询的需求。 背景信息 假定某某集团旗下有3个生产线,每个生产线上有5台设备,传感器会实时采集这些设备的指标数据(例如温
vehicle”路径下增加了新的设备,也将属于该存储组。 设置合理数量的存储组可以带来性能的提升。既不会因为产生过多的存储文件(夹)导致频繁切换IO降低系统速度(并且会占用大量内存且出现频繁的内存-文件切换),也不会因为过少的存储文件夹(降低了并发度)导致写入命令阻塞。 用户应根据自己的数据规模和使用场
MRS管理控制台和集群Manager页面功能区别有哪些? 问: MRS管理控制台和集群Manager页面有什么区别与联系? 答: 用户可以通过MRS管理控制台页面登录到MRS的Manager页面。 Manager分为MRS Manager和FusionInsight Manager,其中:
MRS集群上层应用开发是否支持Python语言进行开发? 答: MRS服务中提供的样例工程和直接进行应用开发没有区别,两者都可以选择。 MRS服务支持Python代码,部分提供了Python样例代码的组件样例工程可参考开发指南文档相关章节。 父主题: 应用开发类
ClickHouse是一款开源的面向联机分析处理的列式数据库,其独立于Hadoop大数据体系,最核心的特点是压缩率和极速查询性能。同时,ClickHouse支持SQL查询,且查询性能好,特别是基于大宽表的聚合分析查询性能非常优异,比其他分析型数据库速度快一个数量级。 ClickHouse核心的功能特性介绍如下:
Streaming作业消费Kafka数据 通过Flume采集指定目录日志系统文件至HDFS 基于Kafka的Word Count数据流统计案例 实时OLAP数据分析 物联网时序数据分析
HetuEngine支持配置IoTDB数据源。 Hudi 升级到0.11.0版本。 IoTDB 新增组件,一体化收集、存储、管理与分析物联网时序数据的服务。 集群管理 支持补丁在线推送及更新。 组件版本信息 表1 MRS组件版本信息 组件 版本 CarbonData 2.2.0 ClickHouse
分析集群:用来做离线数据分析,提供的是Hadoop体系的组件。 流式集群:用来做流处理任务,提供的是流式处理组件。 混合集群:既可以用来做离线数据分析,也可以用来做流处理任务,提供的是Hadoop体系的组件和流式处理组件。 自定义:全量自定义组件组合的MRS集群,MRS 3.x及之后版本支持此类型。