检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
修改模型服务QPS 流量限制QPS是评估模型服务处理能力的关键指标,它指示系统在高并发场景下每秒能处理的请求量。这一指标直接关系到模型的响应速度和处理效率。不当的QPS配置可能导致用户等待时间延长,影响满意度。因此,能够灵活调整模型的QPS对于保障服务性能、优化用户体验、维持业务流畅及控制成本至关重要。
创建Workflow数据集标注节点 功能介绍 通过对ModelArts数据集能力进行封装,实现数据集的标注功能。数据集标注节点主要用于创建标注任务或对已有的标注任务进行卡点标注,主要用于需要对数据进行人工标注的场景。 属性总览 您可以使用LabelingStep来构建数据集标注节点,LabelingStep结构如下:
在ModelArts中导入模型对于镜像大小有什么限制? ModelArts部署使用的是容器化部署,容器运行时有空间大小限制,当用户的模型文件或者其他自定义文件,系统文件超过容器引擎空间大小时,会提示镜像内空间不足。 当前,公共资源池容器引擎空间的大小最大支持50G,专属资源池容器引擎空间的默认为50G
名称或所在目录,导入文件的列数需与数据集schema一致。MRS的详细功能说明,请参考MRS用户指南。 图1 从MRS导入数据 集群名称:系统自动将当前账号下的MRS集群展现在此列表中,但是流式集群不支持导入操作。请在下拉框中选择您所需的集群。 文件路径:根据选择的集群,输入对应的文件路径,此文件路径为HDFS路径。
├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.4.2-py3-none-any.whl # 推理安装包
码。所导入表的schema(列名和类型)需要跟数据集相同。DWS的详细功能说明,请参考DWS用户指南。 图1 从DWS导入数据 集群名称:系统自动将当前账号下的DWS集群展现在列表中,您可以在下拉框中选择您所需的DWS集群。 数据库名称:根据选择的DWS集群,填写数据所在的数据库名称。
type 形状 标注信息 point 点 点的坐标。 <x>100<x> <y>100<y> line 线 各点坐标。 <x1>100<x1> <y1>100<y1> <x2>200<x2> <y2>200<y2> bndbox 矩形框 左上和右下两个点坐标。 <xmin>100<xmin>
参见存储基础知识,有助您理解本章节内容。您可查看数据盘空间分配说明,了解节点数据盘空间分配的情况,以便您根据业务实际情况配置数据盘大小。 表1 容器挂载存储的方式及差异 容器挂载存储的方式 使用场景 特点 挂载操作参考 EmptyDir 适用于训练缓存场景。 Kubernetes
├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.6.3-py3-none-any.whl # 推理安装包
├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.6.0-py3-none-any.whl # 推理安装包
├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.6.0-py3-none-any.whl # 推理安装包
├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.5.0-py3-none-any.whl # 推理安装包
├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.6.0-py3-none-any.whl # 推理安装包
├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.5.0-py3-none-any.whl # 推理安装包
├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.6.0-py3-none-any.whl # 推理安装包
过程,也称为监督训练或有教师学习。常见的有回归和分类。 非监督学习:在未加标签的数据中,试图找到隐藏的结构。常见的有聚类。 强化学习:智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大。 回归 回归反映的是数据属性值在时间上的特征,产生一个将数据项映射到一个实值预
在Linux上安装配置Grafana 适用场景 本章节适用于在Linux操作系统的PC中安装配置Grafana。 前提条件 一台可访问外网的Ubuntu服务器。如果没有请具备以下条件: 准备一台ECS服务器(建议规格选8U或者以上,镜像选择Ubuntu,建议选择22.04版本,本
和类型)需与数据集一致,支持自动获取所选择表的schema。DLI的详细功能说明,请参考DLI用户指南。 图1 DLI导入数据 队列名称:系统自动将当前账号下的DLI队列展现在列表中,用户可以在下拉框中选择需要的队列。 数据库名称:根据选择的队列展现所有的数据库,请在下拉框中选择您所需的数据库。
04-x86_64-roma-20220309171256-40adcc1 镜像构建时间:20220309171256 (yyyy-mm-dd-hh-mm-ss) 镜像系统版本:Ubuntu 18.04.4 LTS cuda:10.2.89 cudnn:7.6.5.32 Python解释器路径及版本:/hom
根据错误信息判断,报错原因为训练作业运行程序读取不到GPU。 处理方法 根据报错提示,请您排查代码,是否已添加以下配置,设置该程序可见的GPU: os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3,4,5,6,7' 其中,0为服务器的GPU编号,可