检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Upsert Kafka 功能描述 Apache Kafka是一个快速、可扩展的、高吞吐、可容错的分布式发布订阅消息系统,具有高吞吐量、内置分区、支持数据副本和容错的特性,适合在大规模消息处理场景中使用。Upsert Kafka 连接器支持以upsert方式从Kafka topic中读取数据并将数据写入Kafka
在停止作业之前,用户可以触发保存点,保存作业的状态信息。当该作业再次启动时用户可以选择是否从保存点恢复。 勾选“触发保存点”表示创建保存点。不勾选“触发保存点”表示不创建保存点。默认不创建保存点。 保存点的生命周期从触发保存点并停止作业开始,重启作业后结束。保存点在重启作业后自动删除,不会一直保存。
由于DLI服务端已经内置了Flink的依赖包,并且基于开源社区版本做了安全加固。为了避免依赖包兼容性问题或日志输出及转储问题,打包时请注意排除以下文件: 系统内置的依赖包,或者在Maven或者Sbt构建工具中将scope设为provided 日志配置文件(例如:“log4j.properties”或者“logback
区列的字段数据。分区表查询时需要指定分区字段,导致查询不到表数据。 问题根因 DLI分区内表在导入数据时,如果文件数据没有包含分区字段,则系统会默认指定分区值“__HIVE_DEFAULT_PARTITION__”,当前Spark判断分区为空时,则会直接返回null,不返回具体的数据。
Upsert Kafka结果表 功能描述 Apache Kafka是一个快速、可扩展的、高吞吐、可容错的分布式发布订阅消息系统,具有高吞吐量、内置分区、支持数据副本和容错的特性,适合在大规模消息处理场景中使用。DLI将Flink作业的输出数据以upsert的模式输出到Kafka中。
作业管理页面。Spark作业管理页面显示所有的Spark作业,作业数量较多时,系统分页显示,您可以查看任何状态下的作业。 表1 作业管理参数 参数 参数说明 作业ID 所提交Spark作业的ID,由系统默认生成。 名称 所提交Spark作业的名称。 队列 所提交Spark作业所在的队列。
终端节点 终端节点(Endpoint)即调用API的请求地址,不同服务不同区域的终端节点不同,您可以从地区和终端节点中查询所有服务的终端节点。 数据湖探索的终端节点如下表所示,请您根据业务需要选择对应区域的终端节点。 表1 数据湖探索的终端节点 区域名称 区域 终端节点(Endpoint)
Kafka读取数据的启动位点。 取值如下: earliest-offset:从Kafka最早分区开始读取。 latest-offset:从Kafka最新位点开始读取。 group-offsets(默认值):根据Group读取。 timestamp:从Kafka指定时间点读取。配置该参数时,同时需要在WITH参数中指定scan
期,参数为long类型字符串,单位为毫秒。 expire-at-date:设置key到某个时间点过期,参数为UTC时间。 expire-at-timestamp:设置key到某个时间点过期,参数为时间戳。 key-ttl 否 无 String key-ttl是key-ttl-mode的补充参数,有以下几种参数值:
数据捕获、运营和分析企业系统之间的数据复制、转换和验证。Ogg 为变更日志提供了统一的格式结构,并支持使用 JSON 序列化消息。 Flink 支持将 Ogg JSON 消息解析为 INSERT/UPDATE/DELETE 消息到 Flink SQL 系统中。在很多情况下,利用这个特性非常有用,例如
期,参数为long类型字符串,单位为毫秒。 expire-at-date:设置key到某个时间点过期,参数为UTC时间。 expire-at-timestamp:设置key到某个时间点过期,参数为时间戳。 key-ttl 否 无 String key-ttl是key-ttl-mode的补充参数,有以下几种参数值:
Hive源表 简介 Apache Hive 已经成为了数据仓库生态系统中的核心。 它不仅仅是一个用于大数据分析和ETL场景的SQL引擎,同样它也是一个数据管理平台,可用于发现,定义,和演化数据。 Flink与Hive的集成包含两个层面,一是利用了Hive的MetaStore作为持
创建source流从Kafka获取数据,作为作业的输入数据。 Apache Kafka是一个快速、可扩展的、高吞吐、可容错的分布式发布订阅消息系统,具有高吞吐量、内置分区、支持数据副本和容错的特性,适合在大规模消息处理场景中使用。 前提条件 Kafka是线下集群,需要通过增强型跨源连
功能描述 DLI将Flink作业的输出数据输出到Kafka中。 Apache Kafka是一个快速、可扩展的、高吞吐、可容错的分布式发布订阅消息系统,具有高吞吐量、内置分区、支持数据副本和容错的特性,适合在大规模消息处理场景中使用。 前提条件 Kafka是线下集群,需要通过增强型跨源连
创建Hive Catalog 简介 Catalog提供了元数据信息,例如数据库、表、分区、视图以及数据库或其他外部系统中存储的函数和信息。 数据处理最关键的方面之一是管理元数据。 元数据可以是临时的,例如临时表、或者通过TableEnvironment注册的UDF。 元数据也可以是持久化的,例如Hive
获取MRS集群全部节点的ip和域名映射,在DLI跨源连接修改主机信息中配置host映射。 如何添加IP域名映射,请参见《数据湖探索用户指南》中“修改主机信息”章节。 Kafka服务端的端口如果监听在hostname上,则需要将Kafka Broker节点的hostname和IP
DLI提供多版本功能,用于数据的备份与恢复。开启多版本功能后,在进行删除或修改表数据时(insert overwrite或者truncate操作),系统会自动备份历史数据并保留一定时间,后续您可以对保留周期内的数据进行快速恢复,避免因误操作丢失数据。其他多版本SQL语法请参考多版本备份恢复数据。
SQL作业访问报错:File not Found 问题现象 执行SQL作业访问报错:File not Found。 可能原因 可能由于文件路径错误或文件不存在导致系统无法找指定文件路径或文件。 文件被占用。 解决措施 检查文件路径、文件名。 检查文件的路径是否正确,包括目录名称和文件名。 文件被占用 文
流生态作业开发指引 流生态系统基于Flink和Spark双引擎,完全兼容Flink/Storm/Spark开源社区版本接口,并且在此基础上做了特性增强和性能提升,为用户提供易用、低时延、高吞吐的数据湖探索。 数据湖探索的流生态开发包括云服务生态、开源生态和自拓展生态: 云服务生态
DLI将Flink作业的输出数据以upsert的模式输出到Kafka中。 Apache Kafka是一个快速、可扩展的、高吞吐、可容错的分布式发布订阅消息系统,具有高吞吐量、内置分区、支持数据副本和容错的特性,适合在大规模消息处理场景中使用。 前提条件 Kafka是线下集群,需要通过增强型跨源连