检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Standard上运行GPU单机单卡训练作业 操作流程 准备工作 购买服务资源(OBS和SWR) 配置权限 创建专属资源池(不需要打通VPC) 安装和配置OBS命令行工具 (可选)工作空间配置 模型训练 本地构建镜像及调试 上传镜像 上传数据和算法到OBS 使用Notebook进行代码调试 创建单机单卡训练作业
参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:per-group Step1 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。
Platform=ModelArts-Service 原因分析 出现该问题的可能原因如下: 用户的自定义镜像中无ascend_check工具,导致启动预检失败。 用户的自定义镜像中的ascend相关工具不可用,导致预检失败。 处理方法 通过给训练作业加环境变量“MA_DETECT_TRAIN_INJECT_C
obsutil安装和配置 obsutil是用于访问、管理对象存储服务OBS的命令行工具,使用该工具可以对OBS进行常用的配置管理操作,如创建桶、上传文件/文件夹、下载文件/文件夹、删除文件/文件夹等。 obsutil安装和配置的具体操作指导请参见obsutils快速入门。 操作命
形状 标注信息 point 点 点的坐标。 <x>100<x> <y>100<y> line 线 各点坐标。 <x1>100<x1> <y1>100<y1> <x2>200<x2> <y2>200<y2> bndbox 矩形框 左上和右下两个点坐标。 <xmin>100<xmin>
训练效果的指标介绍 指标名称 指标说明 NPU/GPU利用率 在训练过程中,机器的NPU/GPU占用情况(横坐标时间,纵坐标占用率)。 显存利用率 在训练过程中,机器的显存占用情况(横坐标时间,纵坐标占用率)。 吞吐 在训练过程中,每卡处理tokens数量(tokens/s/p)。每种框架计算
对话中的检测框可以表示为<box>(x1,y1),(x2,y2)</box>,其中 (x1, y1) 和(x2, y2)分别对应左上角和右下角的坐标,并且被归一化到[0, 1000)的范围内. 检测框对应的文本描述也可以通过<ref>text_caption</ref>表示。 json
对话中的检测框可以表示为<box>(x1,y1),(x2,y2)</box>,其中 (x1, y1) 和(x2, y2)分别对应左上角和右下角的坐标,并且被归一化到[0, 1000)的范围内. 检测框对应的文本描述也可以通过<ref>text_caption</ref>表示。 json
图片的左上角为坐标原点[0, 0],每个坐标点的表示方法为[x, y],x表示横坐标,y表示纵坐标(x和y均>=0)。每种形状的格式如下: bndbox [[0,10],[50,95]] 两个点组成,矩形的左上角为第一个点,矩形的右下角为第二个点(即第一个点x坐标一定小于第二个点
减小,并逐渐趋于稳定平缓。可以使用可视化工具TrainingLogParser查看loss收敛情况。 FAQ 问题:使用TrainingLogParser工具解析训练日志中loss数据,坐标栏空白,未显示数据走势曲线。 解决方法:在解析工具页面右侧,单击日志文件名右边的设置图标,在弹出的窗口中修改Loss
图片的左上角为坐标原点[0, 0],每个坐标点的表示方法为[x, y],x表示横坐标,y表示纵坐标(x和y均>=0)。每种形状的格式如下: bndbox [[0,10],[50,95]] 两个点组成,矩形的左上角为第一个点,矩形的右下角为第二个点(即第一个点x坐标一定小于第二个点
图片的左上角为坐标原点[0, 0],每个坐标点的表示方法为[x, y],x表示横坐标,y表示纵坐标(x和y均>=0)。每种形状的格式如下: bndbox [[0,10],[50,95]] 两个点组成,矩形的左上角为第一个点,矩形的右下角为第二个点(即第一个点x坐标一定小于第二个点
图片的左上角为坐标原点[0, 0],每个坐标点的表示方法为[x, y],x表示横坐标,y表示纵坐标(x和y均>=0)。每种形状的格式如下: bndbox [[0,10],[50,95]] 两个点组成,矩形的左上角为第一个点,矩形的右下角为第二个点(即第一个点x坐标一定小于第二个点
图片的左上角为坐标原点[0, 0],每个坐标点的表示方法为[x, y],x表示横坐标,y表示纵坐标(x和y均>=0)。每种形状的格式如下: bndbox [[0,10],[50,95]] 两个点组成,矩形的左上角为第一个点,矩形的右下角为第二个点(即第一个点x坐标一定小于第二个点
图片的左上角为坐标原点[0, 0],每个坐标点的表示方法为[x, y],x表示横坐标,y表示纵坐标(x和y均>=0)。每种形状的格式如下: bndbox [[0,10],[50,95]] 两个点组成,矩形的左上角为第一个点,矩形的右下角为第二个点(即第一个点x坐标一定小于第二个点
图片的左上角为坐标原点[0, 0],每个坐标点的表示方法为[x, y],x表示横坐标,y表示纵坐标(x和y均>=0)。每种形状的格式如下: bndbox [[0,10],[50,95]] 两个点组成,矩形的左上角为第一个点,矩形的右下角为第二个点(即第一个点x坐标一定小于第二个点
图片的左上角为坐标原点[0, 0],每个坐标点的表示方法为[x, y],x表示横坐标,y表示纵坐标(x和y均>=0)。每种形状的格式如下: bndbox [[0,10],[50,95]] 两个点组成,矩形的左上角为第一个点,矩形的右下角为第二个点(即第一个点x坐标一定小于第二个点
图片的左上角为坐标原点[0, 0],每个坐标点的表示方法为[x, y],x表示横坐标,y表示纵坐标(x和y均>=0)。每种形状的格式如下: bndbox [[0,10],[50,95]] 两个点组成,矩形的左上角为第一个点,矩形的右下角为第二个点(即第一个点x坐标一定小于第二个点
每个检测框的标签。 detection_boxes 每个检测框的四点坐标(y_min,x_min,y_max,x_max),如图2所示。 detection_scores 每个检测框的置信度。 图2 检测框的四点坐标示意图 由于“运行中”的在线服务将持续耗费资源,如果不需再使用此在
录制Profiling Ascend PyTorch Profiler是针对PyTorch框架开发的性能数据采集和解析工具,通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。