检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
本章节介绍如何使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── asc
推理精度测试 本章节介绍如何使用lm-eval工具开展语言模型的推理精度测试,数据集包含mmlu、ARC_Challenge、GSM_8k、Hellaswag、Winogrande、TruthfulQA等。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证
推理精度测试 本章节介绍如何使用lm-eval工具开展语言模型的推理精度测试,数据集包含mmlu、ARC_Challenge、GSM_8k、Hellaswag、Winogrande、TruthfulQA等。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证
本章节介绍如何使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── asc
转换模型后执行推理前,可以使用benchmark工具对MindSpore Lite云侧推理模型进行基准测试。它不仅可以对MindSpore Lite云侧推理模型前向推理执行耗时进行定量分析(性能),还可以通过指定模型输出进行可对比的误差分析(精度)。 精度测试 benchmark工具用于精度验证,主要工作
repo_summary中的信息表示调优过程中使用到的知识库算子个数或者追加到知识库的算子个数。 AOE自动调优更多介绍可参考Ascend转换工具功能说明。 自动高性能算子生成工具 自动高性能算子生成工具AKG(Auto Kernel Generator),可以对深度神经网络模型中的算子进行优化,并提供特定模式下
本章节介绍如何使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── asc
本章节介绍如何使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── asc
环境的数据迁移工作。 增加了和OBS交互工作的整个训练流程如下: 建议使用OBSutil作为和OBS交互的工具,如何在本机安装obsutil可以参考安装和配置OBS命令行工具。 训练数据、代码、模型下载。(本地使用硬盘挂载或者docker cp,在ModelArts上使用OBSutil)
参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:per-group Step1 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。
推理精度测试 本章节介绍如何使用opencompass工具开展语言模型的推理精度测试,数据集是ceval_gen、mmlu_gen、math_gen、gsm8k_gen、humaneval_gen。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证,不适用
Standard上运行GPU单机单卡训练作业 操作流程 准备工作 购买服务资源(OBS和SWR) 配置权限 创建专属资源池(不需要打通VPC) 安装和配置OBS命令行工具 (可选)工作空间配置 模型训练 本地构建镜像及调试 上传镜像 上传数据和算法到OBS 使用Notebook进行代码调试 创建单机单卡训练作业
参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:per-group Step1 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。
Platform=ModelArts-Service 原因分析 出现该问题的可能原因如下: 用户的自定义镜像中无ascend_check工具,导致启动预检失败。 用户的自定义镜像中的ascend相关工具不可用,导致预检失败。 处理方法 通过给训练作业加环境变量“MA_DETECT_TRAIN_INJECT_C
obsutil安装和配置 obsutil是用于访问、管理对象存储服务OBS的命令行工具,使用该工具可以对OBS进行常用的配置管理操作,如创建桶、上传文件/文件夹、下载文件/文件夹、删除文件/文件夹等。 obsutil安装和配置的具体操作指导请参见obsutils快速入门。 操作命
形状 标注信息 point 点 点的坐标。 <x>100<x> <y>100<y> line 线 各点坐标。 <x1>100<x1> <y1>100<y1> <x2>200<x2> <y2>200<y2> bndbox 矩形框 左上和右下两个点坐标。 <xmin>100<xmin>
训练效果的指标介绍 指标名称 指标说明 NPU/GPU利用率 在训练过程中,机器的NPU/GPU占用情况(横坐标时间,纵坐标占用率)。 显存利用率 在训练过程中,机器的显存占用情况(横坐标时间,纵坐标占用率)。 吞吐 在训练过程中,每卡处理tokens数量(tokens/s/p)。每种框架计算
减小,并逐渐趋于稳定平缓。可以使用可视化工具TrainingLogParser查看loss收敛情况。 FAQ 问题:使用TrainingLogParser工具解析训练日志中loss数据,坐标栏空白,未显示数据走势曲线。 解决方法:在解析工具页面右侧,单击日志文件名右边的设置图标,在弹出的窗口中修改Loss
图片的左上角为坐标原点[0, 0],每个坐标点的表示方法为[x, y],x表示横坐标,y表示纵坐标(x和y均>=0)。每种形状的格式如下: bndbox [[0,10],[50,95]] 两个点组成,矩形的左上角为第一个点,矩形的右下角为第二个点(即第一个点x坐标一定小于第二个点
图片的左上角为坐标原点[0, 0],每个坐标点的表示方法为[x, y],x表示横坐标,y表示纵坐标(x和y均>=0)。每种形状的格式如下: bndbox [[0,10],[50,95]] 两个点组成,矩形的左上角为第一个点,矩形的右下角为第二个点(即第一个点x坐标一定小于第二个点