检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
训练性能测试 流程图 训练性能测试流程图如下图所示: 图1 训练性能测试流程 执行性能比较脚本 完成benchmark启动任务。 进入test-benchmark目录执行命令。 ascendfactory-cli performance <cfgs_yaml_file> --baseline
训练性能测试 流程图 训练性能测试流程图如下图所示: 图1 训练性能测试流程 执行训练任务 进入test-benchmark目录执行训练命令,可以多次执行,卡数及其它配置参考NPU卡数取值表按自己实际情况决定。 单机<可选>: # 默认8卡 benchmark-cli train
训练性能测试 流程图 训练性能测试流程图如下图所示: 图1 训练性能测试流程 执行训练任务 进入test-benchmark目录执行训练命令,可以多次执行,卡数及其它配置参考NPU卡数取值表按自己实际情况决定。 单机<可选>: # 默认8卡 benchmark-cli train
选择性添加,在接口中使用的模型名;如果没有配置,则默认为tokenizer。 备注:当前版本仅支持语言+图片多模态性能测试。 脚本运行完成后,测试结果保存在benchmark_parallel.csv中。 父主题: 推理性能测试
选择性添加,在接口中使用的模型名;如果没有配置,则默认为tokenizer。 备注:当前版本仅支持语言+图片多模态性能测试。 脚本运行完成后,测试结果保存在benchmark_parallel.csv中。 父主题: 推理性能测试
选择性添加,在接口中使用的模型名;如果没有配置,则默认为tokenizer。 备注:当前版本仅支持语言+图片多模态性能测试。 脚本运行完成后,测试结果保存在benchmark_parallel.csv中。 父主题: 推理性能测试
语言模型推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范
构造随机token的数据集进行测试;sharegpt表示使用sharegpt数据集进行测试;human-eval数据集表示使用human-eval数据集进行测试。不输入默认为random。注意:当输入为sharegpt或human-eval时,测试数据的输入长度为数据集的真实长度
构造随机token的数据集进行测试;sharegpt表示使用sharegpt数据集进行测试;human-eval数据集表示使用human-eval数据集进行测试。不输入默认为random。注意:当输入为sharegpt或human-eval时,测试数据的输入长度为数据集的真实长度
推理性能测试 本章节介绍如何进行推理性能测试,建议在Notebook的JupyterLab中另起一个Terminal,执行benchmark脚本进行性能测试。若需要在生产环境中进行推理性能测试,请通过调用接口的方式进行测试。 benchmark方法介绍 性能benchmark包括两部分。
推理性能测试 本章节介绍如何进行推理性能测试,建议在Notebook的JupyterLab中另起一个Terminal,执行benchmark脚本进行性能测试。如果需要在生产环境中进行推理性能测试,请通过调用接口的方式进行测试。 约束限制 创建在线服务时,每秒服务流量限制默认为10
推理性能测试 本章节介绍如何进行推理性能测试,建议在Notebook的JupyterLab中另起一个Terminal,执行benchmark脚本进行性能测试。若需要在生产环境中进行推理性能测试,请通过调用接口的方式进行测试。 约束限制 创建在线服务时,每秒服务流量限制默认为100
推理性能测试 本章节介绍如何进行推理性能测试,建议在Notebook的JupyterLab中另起一个Terminal,执行benchmark脚本进行性能测试。若需要在生产环境中进行推理性能测试,请通过调用接口的方式进行测试。 约束限制 创建在线服务时,每秒服务流量限制默认为100
推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动
推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动
推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动
推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动
andom表示构造随机token的数据集进行测试;sharegpt表示使用sharegpt数据集进行测试;human-eval数据集表示使用human-eval数据集进行测试。注意:当输入为sharegpt或human-eval时,测试数据的输入长度为数据集的真实长度,--prompt-tokens的值会被忽略。
推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动
推理性能测试 本章节介绍如何进行推理性能测试,建议在Notebook的JupyterLab中另起一个Terminal,执行benchmark脚本进行性能测试。如果需要在生产环境中进行推理性能测试,请通过调用接口的方式进行测试。 约束限制 创建在线服务时,每秒服务流量限制默认为10