检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
不同Region支持的AI引擎不一样,请以控制台实际界面为准。 亮点特性4:提供在线的交互式开发调试工具JupyterLab ModelArts集成了基于开源的JupyterLab,可为您提供在线的交互式开发调试。您无需关注安装配置,在ModelArts管理控制台直接使用Not
息进行升级。 约束限制 服务升级关系着业务实现,不当的升级操作会导致升级期间业务中断的情况,请谨慎操作。 ModelArts支持部分场景下在线服务进行无损滚动升级。按要求进行升级前准备,做好验证,即可实现业务不中断的无损升级。 表1 支持无损滚动升级的场景 创建模型的元模型来源 服务使用的是公共资源池
rk目录下,该目录下的内容在实例停止后会被保留。可以自定义磁盘空间,如果需要存储数据集、模型等大型文件,建议申请规格300GB+。存储支持在线按需扩容。 图2 自定义存储配置 使用Notebook将OBS数据导入云硬盘EVS 打开已创建的Notebook实例,选择Notebook的python-3
Gallery工具链服务创建成功且实际开始运行时,才会上报话单并开始计费,其他状态不上报就不计费,各个服务开始计费的状态如下。 微调大师:“训练中” AI应用:“运行中” 在线推理服务:“运行中” 计费规则 资源整点扣费,按需计费。 计费的最小单位为秒,话单上报后的每一小时对用户账号进行一次扣费。如果使用过程中暂停、终止了消耗资源的AI
ebook实例。 训练作业:训练作业运行时会收取费用,使用完请及时停止训练作业。同时,也需清理存储到OBS中的数据。 模型部署:模型部署为在线服务、边缘服务时,会收取费用,使用完请及时停止服务。同时,也需清理存储到OBS中的数据。 专属资源池:在使用ModelArts进行AI全流
String 服务ID。 表2 Query参数 参数 是否必选 参数类型 描述 update_time 否 Number 待过滤的更新时间,查询在线服务更新日志可使用,可准确过滤出某次更新任务;默认不过滤。 请求参数 表3 请求Header参数 参数 是否必选 参数类型 描述 X-Auth-Token
若需要部署量化模型,需在Notebook中进行模型权重转换后再部署推理服务。 在推理生产环境中部署推理服务 介绍如何在创建AI应用,部署并启动推理服务,在线预测在线服务。 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.906)
在“模型详情”页面右上角,单击“调优”、“压缩”或“部署”,可以直接使用模型进行训推。 当按钮置灰时,表示模型不支持该任务。部分模型支持“在线体验”功能,请以实际环境为准。 模型介绍 表1列举了ModelArts Studio大模型即服务平台支持的模型清单,模型详细信息请查看界面介绍。
将获取到的Wav2Lip Ascend软件包AscendCloud-AIGC-*.zip文件上传到容器的/home/ma-user目录下。获取路径:Support网站。 解压AscendCloud-AIGC-*.zip文件,解压后将里面指定文件与对应Wave2Lip文件进行替换。 cd /home/ma-user
Tenant Administrator 可选 CES云监控 授予子账号使用CES云监控服务的权限。通过CES云监控可以查看ModelArts的在线服务和对应模型负载运行状态的整体情况,并设置监控告警。 CES FullAccess 可选 SMN消息服务 授予子账号使用SMN消息服务的
"desc_act": false } 启动vLLM,如果是使用命令行的方式,指定--quantization "gptq"参数,其他参数请参考启动在线推理服务。 python -m vllm.entrypoints.openai.api_server --model <your_model>
Step2 权重格式离线转换(可选) AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_tools/AutoAWQ代码目录下执行以下脚本:
Step2 权重格式离线转换(可选) AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_tools/AutoAWQ代码目录下执行以下脚本:
06:00完成了数据校验,10:06:00-10:12:00完成了图像分类,11:30:00完成了服务部署,并在12:00:00停止运行在线服务。同时,使用公共资源池运行实例,模型训练时选择资源池规格为CPU: 8 核 32GB、计算节点个数为1个(单价:3.40 元/小时);服务部署时选择资源池规格为CPU:
ERROR_SYSCALL”报错,多重试几次即可。另外由于网络限制以及文件较大,下载可能很慢需要数个小时,如果重试多次还是失败,建议直接从网站下载大文件后上传到服务器/home目录的个人开发目录中。如果下载时需要跳过大文件,可以设置GIT_LFS_SKIP_SMUDGE=1。 git
根据置信度筛选。 slice_thickness String DICOM层厚,通过层厚筛选样本。 study_date String DICOM扫描时间。 time_in_video String 视频中某个时间。 表12 SearchLabels 参数 参数类型 描述 labels Array
Step2 权重格式离线转换(可选) AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_tools/AutoAWQ代码目录下执行以下脚本:
步骤二 权重格式离线转换(可选) 在GPU上AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_tools/AutoAWQ代码目录下执行以下脚本:
步骤二 权重格式离线转换(可选) 在GPU上AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_tools/AutoAWQ代码目录下执行以下脚本:
Step2 权重格式离线转换(可选) 在GPU上AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_tools/AutoAWQ代码目录下执行以下脚本: