检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
地址的列表用于用户终端(例如:浏览器)选择。 301 Moved Permanently 永久移动,请求的资源已被永久的移动到新的URI,返回信息会包括新的URI。 302 Found 资源被临时移动。 303 See Other 查看其他地址,使用GET和POST请求查看。 304
插件服务的请求URL地址。 URL协议只支持HTTP和HTTPS。 系统会校验URL地址是否为标准的URL格式。 URL对应的IP默认不应为内网,否则会导致注册失败。仅在非商用环境部署时,才允许支持内网URL,且需要通过相关的服务的启动配置项关闭内网屏蔽。 请求方法 插件服务的请求方式,POST或GET。
型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了过拟合。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低过拟合的风险。 数据质量:请检查训练数据的质量,若训练样本出现了大量重复数据,或者数据多样性很差,则会加剧该现象。
是由于训练参数设置的不合理而导致了欠拟合,模型没有学到任何知识。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当增大“训练轮次”的值,或根据实际情况调整“学习率”的值,帮助模型更好收敛。 数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大,则会加剧该现象。
}}标识表示一些动态的信息,让模型根据不同的情况生成不同的文本,增加模型的灵活性和适应性。例如,将提示词设置为“你是一个旅游助手,需要给用户介绍旅行地的风土人情。请介绍下{{location}}的风土人情。”在评估提示词效果时,可以通过批量替换{{location}}的值,来获得模型回答,提升评测效率。
使用数据工程构建CV大模型数据集 CV大模型支持接入的数据集类型 盘古CV大模型支持接入图片类、视频类、其他类数据集,,不同模型所需数据见表1,数据集格式要求请参见图片类数据集格式要求、视频类数据集格式要求、其他类数据集格式要求。 表1 训练CV大模型数据集类型要求 基模型 训练场景 文件内容 文件格式
使用数据工程构建预测大模型数据集 预测大模型支持接入的数据集类型 盘古预测大模型仅支持接入预测类数据集,不同模型所需数据见表1,该数据集格式要求请参见预测类数据集格式要求。 表1 预测大模型与数据集类型对应关系 基模型 模型分类 数据集内容 文件格式 预测大模型 时序预测模型 时序数据
进行推理服务。此时要考虑到模型的响应时间和并发能力。 模型监控与迭代:部署后的模型需要持续监控其性能,并根据反馈进行定期更新或再训练。随着新数据的加入,模型可能需要进行调整,以保证其在实际应用中的表现稳定。 在应用阶段,除了将模型嵌入到具体业务流程中外,还需要根据业务需求不断对模型进行优化,使其更加精准和高效。
用专门设计的算子,例如去除噪声、冗余信息等,提升数据质量。 合成数据集 利用预置或自定义的数据指令对原始数据进行处理,并根据设定的轮数生成新数据。该过程能够在一定程度上扩展数据集,增强训练模型的多样性和泛化能力。 标注数据集 为无标签数据集添加准确的标签,确保模型训练所需的高质量
片段的长度超过设定的时间阈值,该镜头片段将按时长进行进一步拆分。 数据过滤 视频裁剪 裁剪视频中字幕/Logo/水印/黑框等无用信息,生成新视频。 视频元数据过滤 基于视频元数据进行过滤,包括帧率、分辨率和视频时长。注:电影标准帧率为24或30FPS。 宽高比过滤 根据视频的宽高比进行过滤。
清洗算子,以确保数据符合模型训练的标准和业务需求。 数据合成:数据合成利用预置或自定义的数据指令对原始数据集进行处理,并根据设定的轮数生成新的数据。 数据标注:数据标注旨在为无标签的数据集添加准确的标签,标注数据的质量直接影响模型的训练效果和精度。针对不同数据集平台支持人工标注与AI预标注两种形式。
话题重复度控制(presence_penalty) -2~2 0 话题重复度控制主要用于控制模型输出的话题重复程度。 参数设置正值,模型倾向于生成新的、未出现过的内容;参数设置负值,倾向于生成更加固定和统一的内容。 如果您没有专业的调优经验,可以优先使用建议,再结合推理的效果动态调整。
olean。 描述:对于该输出参数的描述。 输出格式:支持输出的格式包括文本、Markdown、JSON。 添加分支 可以添加新的分支ELSE IF,新分支的配置方式与IF分支相同。 模型配置 模型选择 选择已部署的模型。 核采样 模型在输出时会从概率最高的词汇开始选择,直到这些
练的标准。 数据合成:平台支持利用预置或自定义的数据指令对预训练文本、单轮问答、单轮问答(人设))数据集类型进行处理,并根据设定的轮数生成新数据。通过数据合成技术,可以生成大量高质量的训练数据,这些数据可以用于大模型的预训练,增强模型的泛化能力和性能。 数据标注:平台支持对无标签
如果希望申请提升配额,请联系客服。 功能限制 盘古大模型服务的功能限制详见表3。 表3 功能限制 功能类型 使用限制 数据工程-数据格式要求 ModelArts Studio平台支持接入的数据需要满足格式要求,包括文件格式、单个文件大小、所有文本大小以及文件数量等,请参考《用户指南》“使用数据工程构建数据集
人设: 增加人设可以让生成的内容更符合该领域需求。 例如,“假设你是一位银行面试官,请生成10个银行面试问题。”、“假如你是一个高级文案策划,请生成10个理财产品的宣传文案。”、“你是一个财务分析师,请分析上述财务指标的趋势。” 父主题: 提示词写作进阶技巧
xxx。请根据以上的句子/段落,续写为一段不少于xx个字的文本。”,再将回答设置为符合要求的段落。 扩写:根据段落的其中一句或者一段续写成完整的段落。 若您的无监督文档没有任何结构化信息,可以将有监督的问题设置为“以下是一篇文章的某个句子:xxx/某个段落:xxx。请根据以上的
答案,具体格式示例如下: {"context": "你好,请介绍自己", "target": "我是盘古大模型"} csv格式:csv文件的第一列对应context,第二列对应target,具体格式示例如下: "你好,请介绍自己","我是盘古大模型" 单个文件大小不超过50GB,文件数量最多1000个。。
针对预训练阶段,还可以继续进行训练,这一过程称为增量预训练。增量预训练是在已经完成的预训练的基础上继续训练模型。增量预训练旨在使模型能够适应新的领域或数据需求,保持其长期的有效性和准确性。 微调阶段:基于预训练的成果,微调阶段通过在特定领域的数据集上进一步训练,使模型能够更有效地应
后单击“确定”导出模型。 图2 导出模型 导入其他局点盘古大模型 导入盘古大模型前,请确保当前空间为该用户所创建的空间。 导入模型功能可以将其他局点训练的模型导入本局点进行使用。 导入模型前,请参考导出盘古大模型至其他局点完成模型导出操作。 登录ModelArts Studio大模型开发平台,在“空间资产