检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
方法二:使用generate_dataset.py脚本生成数据集方法: 客户通过业务数据,在generate_dataset.py脚本,指定输入输出长度的均值和标准差,生成一定数量的正态分布的数据。具体操作命令如下,可以根据参数说明修改参数。 cd benchmark_tools python generate_dataset
T4/alpaca_gpt4_data.json,数据大小:43.6 MB。 自定义数据 用户也可以自行准备训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下this格式。可
10:图像的清晰度与训练数据集的特征分布存在较大偏移。 11:图像的目标框数量与训练数据集的特征分布存在较大偏移。 12:图像中目标框的面积标准差与训练数据集的特征分布存在较大偏移。 13:图像中目标框的高宽比与训练数据集的特征分布存在较大偏移。 14:图像中目标框的面积占比与训练数据集的特征分布存在较大偏移。
T4/alpaca_gpt4_data.json,数据大小:43.6 MB。 自定义数据 用户也可以自行准备训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。 请注意huggingface中的数据集具有如下this格式。
T4/alpaca_gpt4_data.json,数据大小:43.6 MB。 自定义数据 用户也可以自行准备训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。 请注意huggingface中的数据集具有如下this格式。
T4/alpaca_gpt4_data.json,数据大小:43.6 MB。 自定义数据 用户也可以自行准备训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下this格式。可
替换中。替换成功后,节点列表中会显示新的节点名称。 替换最长时间为24小时,超时后仍然未找到合适的资源,状态会变为“失败”。可将鼠标悬浮在图标上,查看具体失败原因。 每天累计替换的次数不超过资源池节点总数的20%,同时替换的节点数不超过资源池节点总数的5%。 替换节点时需确保有空闲节点资源,否则替换可能失败。
GPU A系列裸金属服务器无法获取显卡如何解决 问题现象 在A系列裸金属服务器上使用PyTorch一段时间后,出现获取显卡失败的现象,报错如下: > torch.cuda.is_available() /usr/local/lib/python3.8/dist-packages/torch/cuda/__init__
10:图像的清晰度与训练数据集的特征分布存在较大偏移。 11:图像的目标框数量与训练数据集的特征分布存在较大偏移。 12:图像中目标框的面积标准差与训练数据集的特征分布存在较大偏移。 13:图像中目标框的高宽比与训练数据集的特征分布存在较大偏移。 14:图像中目标框的面积占比与训练数据集的特征分布存在较大偏移。
10:图像的清晰度与训练数据集的特征分布存在较大偏移。 11:图像的目标框数量与训练数据集的特征分布存在较大偏移。 12:图像中目标框的面积标准差与训练数据集的特征分布存在较大偏移。 13:图像中目标框的高宽比与训练数据集的特征分布存在较大偏移。 14:图像中目标框的面积占比与训练数据集的特征分布存在较大偏移。
10:图像的清晰度与训练数据集的特征分布存在较大偏移。 11:图像的目标框数量与训练数据集的特征分布存在较大偏移。 12:图像中目标框的面积标准差与训练数据集的特征分布存在较大偏移。 13:图像中目标框的高宽比与训练数据集的特征分布存在较大偏移。 14:图像中目标框的面积占比与训练数据集的特征分布存在较大偏移。
的功能验证,并且已经预置了很多常用的安装包,用户无需花费过多的时间来配置环境即可使用。 开发环境提供的预置镜像主要包含: 常用预置包,基于标准的Conda环境,预置了常用的AI引擎,例如PyTorch、MindSpore;常用的数据分析软件包,例如Pandas、Numpy等;常用
10:图像的清晰度与训练数据集的特征分布存在较大偏移。 11:图像的目标框数量与训练数据集的特征分布存在较大偏移。 12:图像中目标框的面积标准差与训练数据集的特征分布存在较大偏移。 13:图像中目标框的高宽比与训练数据集的特征分布存在较大偏移。 14:图像中目标框的面积占比与训练数据集的特征分布存在较大偏移。
云服务,以完成其在ModelArts平台上执行的AI计算任务。 综上,对于图1 权限管理抽象可以做如下解读: 用户访问任何云服务,均是通过标准的IAM权限体系进行访问控制。用户首先需要具备相关云服务的权限(根据您具体使用的功能不同,所需的相关服务权限亦有差异)。 权限:用户使用M
云服务,以完成其在ModelArts平台上执行的AI计算任务。 综上,对于图1 权限管理抽象可以做如下解读: 用户访问任何云服务,均是通过标准的IAM权限体系进行访问控制。用户首先需要具备相关云服务的权限(根据您具体使用的功能不同,所需的相关服务权限多寡亦有差异)。 权限:用户使
根据范围随机生成输入,用相同的输入分别在NPU(GPU)和CPU上执行算子,比较输出差异。预检最大的好处是,它能根据算子(API)的精度标准来比较输出结果并判定其是否有精度问题。预检工具使用包含以下三步:dump、run_ut以及api_precision_compare。基本步骤如下:
是否必选 参数类型 描述 op 否 String 操作类型,目前仅支持replace,代表值替换操作。 path 否 String 操作路径,符合标准的Json PATCH格式,代表以服务详情的Json返回体为基准,想要执行替换的值的目标路径(Json PATH)。当前支持且仅支持对模型
----2.jpg --../ 物体检测场景,其目录结构如下所示。支持jpg、jpeg、png、bmp格式的图片,xml为标准的PACAL VOC格式标注文件。 input_path/ --1.jpg --1.xml --2.jpg
SD1.5基于DevServer适配PyTorch NPU Finetune训练指导(6.3.904) Stable Diffusion(简称SD)是一种基于Latent Diffusion(潜在扩散)模型,应用于文生图场景。对于输入的文字,它将会通过一个文本编码器将其转换为文本
查看日志定位处理问题,或者联系技术支持。 Failed to read standard config.json in the background. 后台读取标准config.json失败。 查看日志定位处理问题,或者联系技术支持。 Failed to read generation_config.json