检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
云容器引擎-成长地图 | 华为云 盘古大模型 盘古大模型服务(PanguLargeModels)致力于深耕行业,打造多领域行业大模型和能力集。盘古大模型能力通过ModelArts Studio大模型开发平台承载,它提供了包括盘古大模型在内的多种大模型服务,提供覆盖全生命周期的大模型工具链。
数据已经完成合成操作。 在完成数据合成后,若无需使用数据标注功能,可直接在“数据合成”页面单击操作列“生成”,生成加工数据集。 加工数据集列表可在“数据工程 > 数据加工 > 加工数据集”中查看。 创建自定义数据合成指令 平台支持用户创建自定义数据合成指令。 本章节将以“生成主题
查看NLP大模型评测报告 评测任务创建成功后,可以查看大模型评测任务报告,具体步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型评测”。 单击操作列“评测报告”,在“评测报告”页面,可以查看评测任务的基本信息及评测概览。
其中,domain_id、domain_name、project_id、project_name获取方式如下: 登录管理控制台。 鼠标移动到右上角已登录的用户名上,在下拉列表中选择“我的凭证”。 在“我的凭证”页面,可以获取domain_id、domain_name、project_id、project_name,如图3。
本检索的知识型Agent,如搜索问答助手、代码生成助手等,执行主体在大模型;另一种是针对复杂工作流场景的流程型Agent,如金融分析助手、网络检测助手等。 知识型Agent:以大模型为任务执行核心,用户通过配置Prompt、知识库等信息,实现工具自主规划与调用,优点是可零码开发,
据,同时也是模型调用时的Prompt。JSON字段解释示例如下: ["metrics":"指标列表","caption":"维度/度量/指标名称","dimensions":"维度列表","query_filters":"where中的过滤条件,所有条件为AND关系","havi
使用盘古NLP大模型创建Python编码助手应用 场景描述 该示例演示了如何使用盘古NLP大模型创建Python编码助手执行应用,示例将使用Agent开发平台预置的Python解释器预置插件。 “Python解释器插件”能够执行用户输入的Python代码,并获取结果。此插件为应用
响应参数 状态码: 201 表9 响应Body参数 参数 参数类型 描述 tasks Array of tasks objects 创建的作业列表。 表10 tasks 参数 参数类型 描述 id String 创建的作业ID。 请求示例 { "name" : "demo-task"
编排工作流 Agent平台支持对工作流编排多个节点,以实现复杂业务流程的编排。 工作流包含两种类型: 对话型工作流。面向多轮交互的开放式问答场景,基于用户对话内容提取关键信息,输出最终结果。适用于客服助手、工单助手、娱乐互动等场景。 任务型工作流。面向自动化处理场景,基于输入内容
编排应用 Agent平台支持为应用配置插件、工作流技能,支持接入知识库,还可增加应用的对话体验,详见创建与管理插件、编排工作流、创建与管理知识库。 应用编排流程见表1。 表1 应用编排流程 操作步骤 说明 步骤1:创建应用 创建一个新应用。 步骤2:配置Prompt 在应用中配置大模型所需的Prompt。
在左侧导航栏中选择“模型开发 > 应用接入”,单击界面右上角“创建应用接入”。 在“应用配置”中,选择已部署好的大模型,单击“确定”。 在“应用接入”列表的“APP Code”操作列中可获取APPCode值。 AK/SK认证 AK/SK签名认证方式仅支持消息体大小12M以内,12M以上的请求请使用Token认证。
服务器成功处理了部分GET请求。 300 Multiple Choices 多种选择。请求的资源可包括多个位置,相应可返回一个资源特征与地址的列表用于用户终端(例如:浏览器)选择。 301 Moved Permanently 永久移动,请求的资源已被永久的移动到新的URI,返回信息会包括新的URI。
构建流程 准备工作 为确保有可用的NLP大模型,请先完成NLP大模型的部署操作,详见《用户指南》“开发盘古NLP大模型 > 部署NLP大模型 > 创建NLP大模型部署任务”。 本实践将使用华为云文本翻译API,请先完成创建多语言文本翻译插件操作。 操作流程 创建盘古多语言文本翻译工作流的流程见表1。
Agent开发常见报错与解决方案 工作流常见错误码与解决方案 工作流常见报错及解决方案请详见表1。 表1 工作流节点常见报错与解决方案 模块名称 错误码 错误描述 解决方案 开始节点 101501 开始节点全局配置未传入值。 开始节点错误,请联系客服解决。 结束节点 101531
响应参数 状态码: 201 表9 响应Body参数 参数 参数类型 描述 tasks Array of tasks objects 创建的作业列表。 表10 tasks 参数 参数类型 描述 id String 创建的作业ID。 请求示例 { "name" : "demo-task"
无监督领域知识数据量无法支持增量预训练,如何进行模型学习 一般来说,建议采用增量预训练的方式让模型学习领域知识,但预训练对数据量的要求较大,如果您的无监督文档量级过小,达不到预训练要求,您可以通过一些手段将其转换为有监督数据,再将转换后的领域知识与目标任务数据混合,使用微调的方式让模型学习。
id 是 类别的唯一标识符,对于人体姿态估计,通常为1。 name 是 类别的名称,通常为person。 keypoints 是 关键点的名称列表,COCO格式中通常定义了17个关键点,如nose、left_eye、right_eye、left_ear、right_ear、left_
ModelArts Studio大模型开发平台使用流程 盘古大模型服务简介 盘古大模型服务致力于深耕行业,打造多领域行业大模型和能力集。 ModelArts Studio大模型开发平台是盘古大模型服务推出的集数据管理、模型训练、模型部署于一体的综合平台,专为开发和应用大模型而设计
创建插件 创建插件的步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“Agent开发”,跳转至Agent开发平台。 单击左侧导航栏“工作台”,在“插件”页签,单击右上角“创建插件”。 在“创建插件”页面,填
NLP大模型训练流程与选择建议 NLP大模型训练流程介绍 NLP大模型的训练分为两个关键阶段:预训练和微调。 预训练阶段:在这一阶段,模型通过学习大规模通用数据集来掌握语言的基本模式和语义。这一过程为模型提供了处理各种语言任务的基础,如阅读理解、文本生成和情感分析,但它还未能针对特定任务进行优化。