检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
rts平台上进行训练。镜像中使用的AI引擎是PyTorch,训练使用的资源是专属资源池的Ascend芯片。 准备工作 准备一套可以连接外部网络,装有Linux系统并安装18.09.7及以上版本docker的虚拟机或物理机用作镜像构建节点,以下称“构建节点”。 可以通过执行docker
Cloud,VPC)为裸金属服务器构建隔离的、用户自主配置和管理的虚拟网络环境,提升用户云中资源的安全性,简化用户的网络部署。您可以在VPC中定义安全组、VPN、IP地址段、带宽等网络特性。用户可以通过VPC方便地管理、配置内部网络,进行安全、快捷的网络变更。同时,用户可以自定义安全组内与组间的访问规则,加强裸金属服务器的安全保护。
则不会显示IPv6网络参数,请以控制台实际显示为准。 RoCE网络 当前使用A系列GPU时,进行分布式训练为了将硬件上的RoCE网卡使用起来,需要配置RoCE网络。 该参数与所选规格有关,若未选中规格或规格不支持RoCE网络,则不显示。 若规格支持RoCE网络但未创建过,单击“新建RoCE网络”即可完成创建。
本文档中的模型运行环境是ModelArts Lite的Server。请参考本文档要求准备资源环境。 资源规格要求 计算规格:不同模型训练推荐的NPU卡数请参见表2。 硬盘空间:至少200GB。 Ascend资源规格: Ascend: 1*ascend-snt9b表示Ascend单卡。 Ascend:
本文档中的模型运行环境是ModelArts Lite的Server。请参考本文档要求准备资源环境。 资源规格要求 计算规格:不同模型训练推荐的NPU卡数请参见表2。 硬盘空间:至少200GB。 Ascend资源规格: Ascend: 1*ascend-snt9b表示Ascend单卡。 Ascend:
PyTorch:2.1.0 Step1 创建ECS 下文中介绍如何在ECS中构建一个推理镜像,请参考ECS文档购买一个Linux弹性云服务器。完成网络配置、高级配置等步骤,可根据默认选择,或进行自定义。创建完成后,单击“远程登录”,后续安装Docker等操作均在该ECS上进行。 注意:C
PyTorch:2.1.0 Step1 创建ECS 下文中介绍如何在ECS中构建一个推理镜像,请参考ECS文档购买一个Linux弹性云服务器。完成网络配置、高级配置等步骤,可根据默认选择,或进行自定义。创建完成后,单击“远程登录”,后续安装Docker等操作均在该ECS上进行。 注意:C
CANN:cann_8.0.rc3 Step1 创建ECS 下文中介绍如何在ECS中构建一个推理镜像,请参考ECS文档购买一个Linux弹性云服务器。完成网络配置、高级配置等步骤,可根据默认选择,或进行自定义。创建完成后,单击“远程登录”,后续安装Docker等操作均在该ECS上进行。 注意:C
CANN:cann_8.0.rc3 Step1 创建ECS 下文中介绍如何在ECS中构建一个推理镜像,请参考ECS文档购买一个Linux弹性云服务器。完成网络配置、高级配置等步骤,可根据默认选择,或进行自定义。创建完成后,单击“远程登录”,后续安装Docker等操作均在该ECS上进行。 注意:C
CANN:cann_8.0.rc3 Step1 创建ECS 下文中介绍如何在ECS中构建一个推理镜像,请参考ECS文档购买一个Linux弹性云服务器。完成网络配置、高级配置等步骤,可根据默认选择,或进行自定义。创建完成后,单击“远程登录”,后续安装Docker等操作均在该ECS上进行。 注意:C
PyTorch:2.1.0 Step1 创建ECS 下文中介绍如何在ECS中构建一个推理镜像,请参考ECS文档购买一个Linux弹性云服务器。完成网络配置、高级配置等步骤,可根据默认选择,或进行自定义。创建完成后,单击“远程登录”,后续安装Docker等操作均在该ECS上进行。 注意:C
CANN:cann_8.0.rc3 Step1 创建ECS 下文中介绍如何在ECS中构建一个推理镜像,请参考ECS文档购买一个Linux弹性云服务器。完成网络配置、高级配置等步骤,可根据默认选择,或进行自定义。创建完成后,单击“远程登录”,后续安装Docker等操作均在该ECS上进行。 注意:C
可以参考本章节使用MoXing Framework的一些进阶用法。 读取完毕后将文件关闭 当读取OBS文件时,实际调用的是HTTP连接读取网络流,注意要记得在读取完毕后将文件关闭。为了防止忘记文件关闭操作,推荐使用with语句,在with语句退出时会自动调用mox.file.File对象的close()方法:
Keras引擎? 开发环境中的Notebook支持。训练作业和模型部署(即推理)暂时不支持。 Keras是一个用Python编写的高级神经网络API,它能够以TensorFlow、CNTK或者Theano作为后端运行。Notebook开发环境支持“tf.keras”。 如何查看Keras版本
表2 响应Body参数 参数 参数类型 描述 networkCidrs Array of strings 网络配置项。 networkQuota Integer 用户可创建网络个数配额。 poolQuota Integer 用户可创建资源池个数配额。 pooHighAvailable
本文档中的模型运行环境是ModelArts Lite Server。请参考本文档要求准备资源环境。 资源规格要求 计算规格:不同模型训练推荐的NPU卡数请参见表2。 硬盘空间:至少200GB。 Ascend资源规格: Ascend: 1*ascend-snt9b表示Ascend单卡。 Ascend:
本文档中的模型运行环境是ModelArts Lite Server。请参考本文档要求准备资源环境。 资源规格要求 计算规格:不同模型训练推荐的NPU卡数请参见表2。 硬盘空间:至少200GB。 Ascend资源规格: Ascend: 1*ascend-snt9b表示Ascend单卡。 Ascend:
本文档中的模型运行环境是ModelArts Lite的Server。请参考本文档要求准备资源环境。 资源规格要求 计算规格:不同模型训练推荐的NPU卡数请参见表1。 硬盘空间:至少200GB。 Ascend资源规格: Ascend: 1*ascend-snt9b表示Ascend单卡。 Ascend:
于以下原因导致nvidia-fabricmanager.service不工作: 可能系统资源不足、如内存不足、内存泄露。 硬件故障、如IB网络或者GPU互联设备故障等。 没安装nvidia-fabricmanager组件或被误卸载。 处理方法 如果未安装fabricmanager,则需安装改组件。
Standard自动学习 ModelArts通过机器学习的方式帮助不具备算法开发能力的业务开发者实现算法的开发,基于迁移学习、自动神经网络架构搜索实现模型自动生成,通过算法实现模型训练的参数自动化选择和模型自动调优的自动学习功能,让零AI基础的业务开发者可快速完成模型的训练和部署。