检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
息时,请仔细阅读“推理支持的AI引擎”中每个runtime的说明信息。 metrics 否 object数据结构 模型的精度信息,包括平均数、召回率、精确率、准确率,metrics object数据结构说明如表2所示。 结果会显示在模型详情页面的“模型精度”模块。 apis 否 api数据结构数组
用于指定预处理数据的工作线程数。随着线程数的增加,预处理的速度也会提高,但也会增加内存的使用。 per_device_train_batch_size 1 指定每个设备的训练批次大小。 gradient_accumulation_steps 8 必须修改,指定梯度累积的步数,这可以增加批次大小而不增加内存消耗。可参考表1
用于指定预处理数据的工作线程数。随着线程数的增加,预处理的速度也会提高,但也会增加内存的使用。 per_device_train_batch_size 1 指定每个设备的训练批次大小。 gradient_accumulation_steps 8 必须修改,指定梯度累积的步数,这可以增加批次大小而不增加内存消耗。可参考表1
且输入输出长度也在一定范围内变化时,模型的延迟和吞吐。该场景能模拟实际业务下动态的发送不同长度请求,能评估推理框架在实际业务中能支持的并发数。 benchmark代码目录 性能benchmark验证使用到的脚本存放在代码包AscendCloud-LLM-xxx.zip的llm_t
States、Gradient分布到不同的NPU - ZeRO-3 Optimizer States、Gradient、Model Parameter分布到不同的NPU 增加卡数重新训练,未解决找相关人员定位。 问题2:访问容器目录时提示Permission denied 由于在容器中没有相应目录的权限,会导致访问时提示Permission
在上传数据时,请选择非加密桶进行上传,否则会由于加密桶无法解密导致后期的训练失败。 用于训练的音频,至少有2种以上的分类,每种分类的音频数据数不少20条。 创建数据集 数据准备完成后,需要创建相应项目支持的类型的数据集,具体操作请参考创建ModelArts数据集。 父主题: 使用自动学习实现声音分类
准备模型文件和权重文件OBS路径下的文件传输至/home/mind/model路径下。--tensor-parallel-size:并行卡数。 --hostname:服务部署的IP,使用本机IP 0.0.0.0。 --port:服务部署的端口8080。 --max-model-l
在JupyterLab中使用TensorBoard可视化作业 ModelArts支持在开发环境中开启TensorBoard可视化工具。TensorBoard是TensorFlow的可视化工具包,提供机器学习实验所需的可视化功能和工具。 TensorBoard是一个可视化工具,能够
Scatter、Gather算子性能提升,满足MoE训练场景 matmul、swiglu、rope等算子性能提升,支持vllm推理场景 支持random随机数算子,优化FFN算子,满足AIGC等场景 支持自定义交叉熵融合算子,满足BMTrain框架训练性能要求 优化PageAttention算子,满足vllm投机推理场景
用户项目ID。获取方法请参见获取项目ID和名称。 表2 Query参数 参数 是否必选 参数类型 描述 limit 否 Integer 指定每一页查询返回的最大条目数,默认为200。 offset 否 Integer 分页列表的起始页,默认为0。 请求参数 无 响应参数 状态码:200 表3 响应Body参数
{env_ip} was not found.") sys.exit(1) # RANK_TABLE_FILE文件中,NPU卡数为0,表示未获取到NPU if device_count == 0: logger.error(f"Get RANK_TABLE
{env_ip} was not found.") sys.exit(1) # RANK_TABLE_FILE文件中,NPU卡数为0,表示未获取到NPU if device_count == 0: logger.error(f"Get RANK_TABLE
/scripts/install.sh; sh ./scripts/llama2/0_pl_lora_13b.sh 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表2进行配置。 图2 选择资源池规格 新增SFS Turbo挂载配置,并选择用户创建的SFS Turbo文件系统。
且输入输出长度也在一定范围内变化时,模型的延迟和吞吐。该场景能模拟实际业务下动态的发送不同长度请求,能评估推理框架在实际业务中能支持的并发数。 性能benchmark验证使用到的脚本存放在代码包AscendCloud-LLM-xxx.zip的llm_tools/llm_evaluation目录下。
表示训练中所有机器一个step所处理的样本量。影响每一次训练迭代的时长。 TP 8 表示张量并行。 PP 1 表示流水线并行。一般此值与训练节点数相等,与权重转换时设置的值相等。 CP 1 表示context并行,默认为1。应用于训练长序列文本的模型。如果训练时SEQ_LEN超过32768长度,则推荐增加CP值(CP
/scripts/install.sh; sh ./scripts/llama2/0_pl_pretrain_13b.sh 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表2进行配置。 图2 选择资源池规格 新增SFS Turbo挂载配置,并选择用户创建的SFS Turbo文件系统。
/scripts/install.sh; sh ./scripts/llama2/0_pl_sft_13b.sh 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表2进行配置。 图2 选择资源池规格 新增SFS Turbo挂载配置,并选择用户创建的SFS Turbo文件系统。
requests: huawei.com/ascend-1980: "1" # 需求卡数,key保持不变。Number of required NPUs. The maximum value is 16. You can add
Integer 核数。 表47 Gpu 参数 参数类型 描述 unit_num Integer gpu卡数。 product_name String 产品名。 memory String 内存。 表48 Npu 参数 参数类型 描述 unit_num String npu卡数。 product_name
准备模型文件和权重文件OBS路径下的文件传输至/home/mind/model路径下。 --tensor-parallel-size:并行卡数。 --hostname:服务部署的IP,使用本机IP 0.0.0.0。 --port:服务部署的端口8080。 --max-model-l