检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
标签(Label) 标签是属性的集合,描述了一个点或边拥有的所有属性的数据格式。 在不同的标签中,如果定义了相同的属性名称(Property name),则定义的cardinality和dataType需要跟已定义的一致。2.3.18版本以后不再有该限制,即支持不同Label下的同名属性类型不同。
导出过滤后的边(2.2.7) 功能介绍 导出满足过滤条件的边集合。 URI POST /ges/v1.0/{project_id}/graphs/{graph_name}/edges/action?action_id=export 请求参数 表1 Body参数说明 参数 是否必选
删除过滤后的边(2.2.7) 功能介绍 删除满足过滤条件的边集合。 URI POST /ges/v1.0/{project_id}/graphs/{graph_name}/edges/action?action_id=delete 请求参数 表1 Body参数说明 参数 是否必选
器下。 资源的价格 不同区域的资源价格可能有差异,请参见华为云服务价格详情。 如何选择可用区 是否将资源放在同一可用区内,主要取决于您对容灾能力和网络时延的要求。 如果您的应用需要较高的容灾能力,建议您将资源部署在同一区域的不同可用区内。 如果您的应用要求实例之间的网络延时较低,则建议您将资源创建在同一可用区内。
关联预测算法(Link Prediction)给定两个节点,根据Jaccard度量方法计算两个节点的相似程度,预测节点之间的紧密关系。 适用场景 关联预测算法(Link Prediction)适用于社交网上的好友推荐、关系预测等场景。 参数说明 表1 关联预测算法(Link Prediction)参数说明
标签:统计当前画布中所有的标签名称和对应的点边数量。 节点权重Top10:当前图中边数量最多的十个节点。 以下图统计信息为例,图中共有7个标签。标签为FUND_PRODV的点有5个,标签为FIN_PRODV的点有3个。 图中权重最大的是节点id为1101的点,共有5条边。排名第十的是节点id为1103的点,共有1条边。
k跳算法(k-hop) 概述 k跳算法(k-hop)从起点出发,通过宽度优先搜索(BFS),找出k层与之关联的所有节点。找到的子图称为起点的“ego-net”。k跳算法会返回ego-net中节点的个数。 适用场景 k跳算法(k-hop)适用于关系发现、影响力预测、好友推荐等场景。 参数说明 表1
String source节点的个数不超过10000个 - - targets 是 终点ID集合,多个节点ID以逗号分隔(即,标准CSV输入格式) String target节点的个数不超过10000个 - - directed 否 是否考虑边的方向 Bool true 或false,布尔型。
Paths:表示距离最短的时序路径。 Foremost Temporal Paths:表示尽可能早的到达目标节点的时序路径。 Fastest Temporal Paths :表示耗费时间最短的时序路径。 适用场景 适用于疫情或疾病传播溯源、信息传播和舆情分析、结合时序的路径规划、资金流通路径等场景。
k核算法(k-core) 概述 k核算法(k-core)是图算法中的一个经典算法,用以计算每个节点的核数。其计算结果是判断节点重要性最常用的参考值之一,较好的体现了节点的传播能力。 适用场景 k核算法(k-core)适用于社区发现、金融风控等场景。 参数说明 表1 k核算法(k-core)参数说明
sources 否 查询的起始节点ID集合 String - 标准csv格式,ID之间以英文逗号分隔,例如:“Alice,Nana” n 否 枚举的满足过滤条件的圈的个数的上限 Integer [1,100000] 100 statistics 否 是否输出所有满足过滤条件的圈的个数 Boolean
是否考虑边的方向。取值为true或者false,默认值为true。 weight 否 String 边上权重,取值为空或字符串。 当某边没有对应属性时,权重将默认为1。 空:边上的权重、距离默认为“1"。 字符串:对应的边上的属性将作为权重。 说明: 不支持对缺失属性值的默认处理,会直接报错。
互联网应用 在移动互联网时代,面对庞大的社交关系,媒体传播网络,GES可以帮助客户快速、有效的发现海量数据中隐含的信息。 该场景能帮助您实现以下功能。 推荐好友、商品或资讯 通过好友关系、用户画像、行为相似性、商品相似性、资讯传播的途径等,实现好友、商品或资讯的个性化推荐。 用户分群 通过
增和BFS遍历顺序(temporal bfs算法),搜索周围与之相关联的点,输出对应各节点的到达时间以及和源起点之间的距离。具体操作步骤如下: 在左侧“动态图”操作区的“动态拓展”模块内填写参数: 开始和结束的时间以及属性值在上述章节时间轴设置中已经设置完成,如果要修改参数,单击
Correlation)计算所有边上起点和终点度数之间的Pearson关联系数,常用来表示图中高度数节点是否和高度数节点相连。 适用场景 度数关联度算法(Degree Correlation)适用于衡量图的结构特性场景。 参数说明 无。 示例 单击运行,计算图的度数关联度,JSON结果会展示在查询结果区。
k跳算法(k_hop) 功能介绍 根据输入参数,执行k跳算法。 k跳算法从起点出发,通过宽度优先搜索(BFS),找出k层与之关联的所有节点。找到的子图称为起点的“ego-net”。k跳算法会返回ego-net中节点及其个数。 URI POST /ges/v1.0/{project_i
隐藏label 隐藏当前选择的label的点和边 在绘图区,单击图中任意一个点,被选中的点会显示为。 表示label隐藏。在图数据中默认是全部展示的,单击label旁的“眼睛”按钮,可隐藏当前选择的label的点和边(即在画布中不展示)。 表示基于label的实体过滤查询,单击该查询按
从一个点出发搜索到目标节点的时序路径(时序路径满足动态图上信息传播的有序性,路径上后一条边的经过时间要晚于或等于前一条边的经过时间),在画布上呈现点、边随时间递增(或非减)的变化趋势。 该功能可以通过strategy参数调整搜索的是距离最短的时序路径,还是尽早到达目标节点的时序路径。具体操作步骤如下:
graph_id String 备份关联的图ID。 graph_name String 备份关联的图Name。 graph_status String 备份关联的图状态。 graph_size_type_index String 备份关联的图规格。 data_store_version
删除点边 执行删除操作会永久的删除您选中的点和边,该操作不可逆,请谨慎考虑。 点详情弹窗,可查看节点的相关信息。 把鼠标移动到想要查看的非虚化节点上,会自动显示出该节点的id、label,属性等信息。 图10 点详情信息 弹窗最多能显示节点的6个属性。当该节点的属性大于6个时,您可以到