检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
当您使用自定义脚本创建算法的时候,如果您的模型引用了其他依赖,您需要在“算法管理 > 创建算法”的“代码目录”下放置相应的文件或安装包。 安装python依赖包请参考模型中引用依赖包时,如何创建训练作业? 安装C++的依赖库请参考如何安装C++的依赖库? 在预训练模型中加载参数请参考如何在训练中加载部分训练好的参数?
到模型时的输出(预测项)。 除标签列外数据集中至少还应包含两个有效特征列(列的取值至少有两个且数据缺失比例低于10%)。 当前由于特征筛选算法限制,预测数据列建议放在数据集最后一列,否则可能导致训练失败。 表格数据集示例: 以银行存款预测数据集为例:根据预测人的年龄、工作类型、婚
orkflow的开发态。当确定好整条流水线后,开发者可以将流水线固化下来,提供给其他人使用。使用者无需关注流水线中包含什么算法,也不需要关注流水线是如何实现的。使用者只需要关注流水线生产出来的模型或者应用是否符合上线要求,如果不符合,是否需要调整数据和参数重新迭代。这种使用固化下
objects 超参搜索算法的参数列表。 description String 超参搜索算法的描述。 表4 params 参数 参数类型 描述 key String 超参搜索算法的参数名称。 value String 超参搜索算法的参数取值。 type String 超参搜索算法的参数类型。
参数相关的配置使用Placeholder对象来表示,以占位符的形式实现用户数据运行时配置的能力,当前支持的数据类型包括:int、str、bool、float、Enum、dict、list。开发者可根据场景需要,将节点中的相关字段(如算法超参)通过Placeholder的形式透出,支持设置默认值,供用户修改配置使用。
【下线公告】华为云ModelArts算法套件下线公告 华为云ModelArts服务算法套件将在2024年6月30日00:00(北京时间)正式退市。 下线范围 下线Region:华为云全部Region。 下线影响 正式下线后,ModelArts Notebook中将不会预置算法套件相关工具ma-c
请求超时返回Timeout 问题现象 服务预测请求超时 原因分析 请求超时,大概率是APIG(API网关)拦截问题。需排查APIG(API网关)和模型。 处理方法 优先排查APIG(API网关)是否是通的,可以在本地使用curl命令排查,命令行:curl -kv {预测地址}。如返回T
objects 算法类别的列表。 total Integer 总数。 表4 ProcessorTaskItem 参数 参数类型 描述 label_en String 算法类别的英文名称。 label_zh String 算法类别名称。 template_id String 算法类别的ID。
在ModelArts中训练好后的模型如何获取? 使用自动学习产生的模型只能在ModelArts上部署上线,无法下载至本地使用。 使用自定义算法或者订阅算法训练生成的模型,会存储至用户指定的OBS路径中,供用户下载。 父主题: Standard模型训练
Gallery中,共享给其他用户使用。 “资产集市 > 算法”:共享了算法。 AI Gallery的算法模块支持算法的共享和订阅。在AI Gallery的“算法”中,可以查找您想要的算法,订阅满足业务需要的资产,最后推送至ModelArts控制台使用。也可以将个人开发的算法分享发布至AI Gallery中,共享给其他用户使用。
说明: 只有北京四区域支持限时免费规格。 如果您购买了套餐包,可优先选择您对应规格的套餐包,在“配置费用”处会显示您的套餐余量,以及超出的部分如何计费,请您关注,避免造成不必要的资源浪费。 单击“创建项目”,预测分析项目创建成功后页面自动跳转到“自动学习工作流”。 预测分析项目的工作流,将依次运行如下节点:
下、费时费力,AI技术显然可以为此贡献一份力量。 该案例介绍了华为云一站式开发平台ModelArts的自动学习功能实现的常见生活垃圾分类,让您不用编写代码也可以实现生活垃圾分类。 本案例只适用于新版自动学习功能。 步骤一:准备工作 注册华为账号并开通华为云、实名认证 注册华为账号并开通华为云
MA_JOB_DIR 训练算法文件夹所在的父目录。 “MA_JOB_DIR=/home/ma-user/modelarts/user-job-dir” MA_MOUNT_PATH ModelArts挂载至训练容器内的路径,用于临时存放训练算法、算法输入、算法输出、日志等文件。 “M
标注物体检测数据 物体检测之前,首先需考虑如何设计标签,标签设计需要对应所检测图片的明显特征,并且选择的标签比较容易识别(画面主体物与背景区分度较高),每个标签就是对所检测图片期望识别的全部结果。物体的标签设计完成之后,基于设计好的标签准备该图片的数据,每种需识别出的标签,建议应
pbtxt。 原因分析 算法要求标注框为矩形标注框,提供的数据标注为非矩形,因此导致该错误发生。 处理方法 请您将数据的标注改为矩形的标注框。 建议与总结 在训练作业前,推荐您检查数据的标注是否符合算法要求(如物体检测类算法的标注框为矩形标注框)。 父主题: 预置算法运行故障
Verification successful 步骤二:准备数据 准备算法 此处以订阅算法举例,您也可以自己准备算法。 从AI Gallery订阅一个图像分类的算法进入AI Gallery>资产集市>算法,搜索自动学习算法-图像分类。 单击算法右侧的“订阅”。 在弹出的窗口中,勾选“我已阅读并同意
print(engine_dict) 使用案例 主要包含七种场景的用例: 使用订阅自AI Gallery的算法 使用算法管理中的算法 使用自定义算法(代码目录+启动文件+官方镜像) 使用自定义算法(代码目录+脚本命令+自定义镜像) 基于数据集版本发布节点构建作业类型节点 作业类型节点结合可视化能力
ModelArts.2755 AiAlgorithmNotFound 算法未找到 请检查请求中算法信息的合法性 400 ModelArts.2756 HasSameNameWithMarketAlgorithm 与已订阅算法重名 请检查请求中算法信息的合法性 400 ModelArts.2757 CodeDirError
使用预置算法训练时,训练失败,报“bndbox”错误 问题现象 使用预置算法创建训练作业,训练失败,日志中出现如下报错。 KeyError: 'bndbox' 原因分析 用于训练的数据集中,使用了“非矩形框”标注。而预置使用算法不支持“非矩形框”标注的数据集。 处理方法 此问题有两种解决方法:
该日志表示数据集中的有效样本量为0,可能有如下原因: 数据未标注。 标注的数据是不符合规格的(如目标检测算法要求标注为矩形框,但是提供数据标注为非矩形框)。 处理方法 请您检查数据是否已标注,或检查数据标注是否符合算法要求。 父主题: 预置算法运行故障