检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
大模型概念类问题 大模型是什么 大模型的计量单位token指的是什么 大模型是否可以自定义人设 盘古自然语言大模型的适用场景有哪些 大模型的安全性需要从哪些方面展开评估和防护 训练智能客服系统大模型需要考虑哪些方面
回答的风格或格式有特殊要求:虽然通用模型学习了相当可观的基础知识,但如果目标任务要求回答必须符合特定的风格或格式,这将造成和基础知识的数据分布差异。例如,需要模型使用某银行客服的口吻进行线上问答,此时需要使用符合该银行风格和格式的数据集进行微调,以提升模型的遵循度。 Prompt工程后,效果仍无法达到预期:当对模
情况可能是由于以下几个原因导致的,建议您依次排查: 数据格式:多轮问答场景需要按照指定的数据格式来构造,问题需要拼接上历史所有轮对话的问题和回答。比如,当前是第三轮对话,数据中的问题字段需要包含第一轮的问题、第一轮的回答、第二轮的问题、第二轮的回答以及第三轮的问题,答案字段则为第
题重复度控制,如下提供了这些推理参数的建议值和说明,供您参考: 表1 推理参数的建议和说明 推理参数 范围 建议值 说明 温度(temperature) 0~1 0.3 温度主要用于控制模型输出的随机性和创造性。温度越高,输出的随机性和创造性越高;温度越低,输出结果越可以被预测,确定性相对也就越高。
限,建议您替换可支持更长长度的模型。 数据质量:请检查训练数据中是否存在包含异常截断的数据,可以通过规则进行清洗。 父主题: 典型训练问题和优化策略
这种情况可能是由于以下原因导致的,建议您排查: 数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大、样本中存在异常数据、样本的多样性较差,都将影响模型训练的效果,建议提升您的数据质量。 父主题: 典型训练问题和优化策略
Python SDK 安装SDK 配置SDK LLMs(语言模型) Prompt(提示词模板) Memory(记忆) Skill(技能) Agent(智能代理) 应用示例 父主题: 盘古应用开发SDK
大模型的安全性需要从哪些方面展开评估和防护 盘古大模型的安全性主要从以下方面考虑: 数据安全和隐私保护:大模型涉及大量训练数据,这些数据是重要资产。为确保数据安全,需在数据和模型训练的全生命周期内,包括数据提取、加工、传输、训练、推理和删除的各个环节,提供防篡改、数据隐私保护、加
Java SDK 安装SDK 配置SDK LLMs(语言模型) Prompt(提示词模板) Memory(记忆) Skill(技能) Agent(智能代理) 应用示例 父主题: 盘古应用开发SDK
用较大的学习率和较大的批量大小,以提高训练效率。如果微调数据量相对较少,则可以使用较小的学习率和较小的数据批量大小,避免过拟合。 通用模型的规格:如果模型参数规模较小,那么可能需要较大的学习率和较大的批量大小,以提高训练效率。如果规模较大,那么可能需要较小的学习率和较小的批量大小,防止内存溢出。
模型生成结果和标注结果分别按1-gram、2-gram、3-gram和4-gram拆分后,然后计算加权平均精确率。其中,n-gram指的是一个句子中连续的n个单词片段。BLEU-4 的数值越高,表明模型性能越好。 困惑度指标介绍 困惑度用来衡量大语言模型预测一个语言样本的能力。数值越低,准确率越高,表明模型性能越好。
过拟合的风险。 数据质量:请检查训练数据的质量,若训练样本出现了大量重复数据,或者数据多样性很差,则会加剧该现象。 父主题: 典型训练问题和优化策略
推理SDK清单 SDK分类 SDK功能 支持语言 使用场景 推理SDK 对话问答(多轮对话)(/chat/completions) Java、Python、Go、.NET、NodeJs 基于对话问答功能,用户可以与模型进行自然而流畅的对话和交流。 通用文本(文本补全)(/text/completions)
测试集质量:请检查测试集的目标任务和分布与实际场景是否一致,质量较差的测试集无法反映模型的真实结果。 数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大,则会加剧该现象。此外,若可预见实际场景会不断发生变化,建议您定期更新训练数据,对模型进行微调更新。 父主题: 典型训练问题和优化策略
填写AI助手的描述,如填写功能介绍。 指令 通过指令可以设定A助手的行为和响应。如设置AI助手可以扮演的角色、指定可以访问的工具、设置结果的输出风格等。 模型配置 嵌入模型 用于对AI助手进行任务规划、工具选择和生成回复。 模型版本 选择与“嵌入模型”对应的版本。例如,嵌入模型为N2系列,则模型版本也为N2。
全陌生的地方。李晓发现自己穿越到了宋朝。他身处一座繁华的城市,人们穿着古代的服饰,用着他听不懂的语言交谈。他意识到自己真的穿越了。李晓在宋朝的生活充满了挑战。他必须学习如何使用新的语言,适应新的生活方式。他开始学习宋朝的礼仪,尝试理解这个时代的文化。在宋朝,李晓遇到了许多有趣的人
能模型)来获取有监督场景。一个比较常见的方法是,将无监督的文本按照章节、段落、字符数进行切片,让模型基于这个片段生成问答对,再将段落、问题和答案三者组装为有监督数据。使用模型构建的优点是数据丰富度更高,缺点是成本较高。 当您将无监督数据构建为有监督数据时,请尽可能保证数据的多样性
用于控制生成文本的多样性和创造力。 取值接近0表示最低的随机性,1表示最高的随机性。一般来说,temperature越低,适合完成确定性的任务。temperature越高,如0.9,适合完成创造性的任务。 temperature参数可以影响语言模型输出的质量和多样性,但也不是唯一的
的值,或根据实际情况调整“学习率”的值,帮助模型更好收敛。 数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大,则会加剧该现象。 父主题: 典型训练问题和优化策略
现象会更加明显。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低过拟合的风险。 父主题: 典型训练问题和优化策略