检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
df3 CANN:cann_8.0.rc3 PyTorch:2.1.0 基础镜像的使用 用户通过ECS获取和上传基础镜像步骤拉取基础镜像并上传至SWR中。随后可通过使用基础镜像、ECS中构建新镜像的方式(二选一)来部署训练环境。方案的区别如下: 直接使用基础镜像方案:用户可在训练
处理方法 对于OBS连接不稳定的现象,通过增加代码来解决。您可以在代码最前面增加如下代码,让TensorFlow对ckpt和summary的读取和写入可以通过本地缓存的方式中转解决: import moxing.tensorflow as mox mox.cache() 父主题:
出现如下信息则表示校验通过。 Verification successful 步骤二:准备数据 准备算法 此处以订阅算法举例,您也可以自己准备算法。 从AI Gallery订阅一个图像分类的算法进入AI Gallery>资产集市>算法,搜索自动学习算法-图像分类。 单击算法右侧的“订阅”。 在弹出的窗口中,勾选“我已阅读并同意
x['input_ids'], sample[key])) return sample 支持的是预训练数据风格,会根据参数args.json_keys的设置,从数据集中找到对应关键字的文本内容。例如本案例中提供的 train-00000-of-00001-a09b74b3ef9c3b56.parquet
x['input_ids'], sample[key])) return sample 支持的是预训练数据风格,会根据参数args.json_keys的设置,从数据集中找到对应关键字的文本内容。例如本案例中提供的 train-00000-of-00001-a09b74b3ef9c3b56.parquet
在Standard上部署SD WebUI推理服务 本文档主要介绍如何在ModelArts Standard的推理环境上部署Stable Diffusion的WebUI套件,使用NPU卡进行推理。 完成在DevServer上部署SD WebUI推理服务章节的任务后,如果还需要在Mo
080 CANN:cann_8.0.rc3 PyTorch:2.1.0 基础镜像的使用 用户通过ECS获取和上传基础镜像步骤拉取基础镜像并上传至SWR中。随后可通过使用基础镜像、ECS中构建新镜像的方式(可二选一)来部署训练环境。方案的区别如下: 直接使用基础镜像方案:用户可在训
29a CANN:cann_8.0.rc2 PyTorch:2.1.0 基础镜像的使用 用户通过ECS获取和上传基础镜像步骤拉取基础镜像并上传至SWR中。随后可通过使用基础镜像、ECS中构建新镜像、Notebook中构建新镜像的方式(三选一)来部署训练环境。方案的区别如下: 直接
df3 CANN:cann_8.0.rc3 PyTorch:2.1.0 基础镜像的使用 用户通过ECS获取和上传基础镜像步骤拉取基础镜像并上传至SWR中。随后可通过使用基础镜像、ECS中构建新镜像的方式(可二选一)来部署训练环境。方案的区别如下: 直接使用基础镜像方案:用户可在训
BS的文件之间的关系 JupyterLab目录的文件与Terminal中work目录下的文件相同。即用户在Notebook中新建的,或者是从OBS目录中同步的文件。 挂载OBS存储的Notebook,JupyterLab目录的文件可以与OBS的文件进行同步,使用JupyterLa
x['input_ids'], sample[key])) return sample 支持的是预训练数据风格,会根据参数args.json_keys的设置,从数据集中找到对应关键字的文本内容。例如本案例中提供的 train-00000-of-00001-a09b74b3ef9c3b56.parquet
x['input_ids'], sample[key])) return sample 支持的是预训练数据风格,会根据参数args.json_keys的设置,从数据集中找到对应关键字的文本内容。例如本案例中提供的 train-00000-of-00001-a09b74b3ef9c3b56.parquet
x['input_ids'], sample[key])) return sample 支持的是预训练数据风格,会根据参数args.json_keys的设置,从数据集中找到对应关键字的文本内容。例如本案例中提供的 train-00000-of-00001-a09b74b3ef9c3b56.parquet
x['input_ids'], sample[key])) return sample 支持的是预训练数据风格,会根据参数args.json_keys的设置,从数据集中找到对应关键字的文本内容。例如本案例中提供的 train-00000-of-00001-a09b74b3ef9c3b56.parquet
x['input_ids'], sample[key])) return sample 支持的是预训练数据风格,会根据参数args.json_keys的设置,从数据集中找到对应关键字的文本内容。例如本案例中提供的 train-00000-of-00001-a09b74b3ef9c3b56.parquet
├── requirements.txt # 第三方依赖 目前性能测试已经支持投机推理能力。 静态benchmark验证 本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在Step4 制作推理镜像步骤中已经上传过AscendCloud-LLM-x
模型镜像版本 模型 版本 CANN cann_8.0.rc3 驱动 23.0.6 PyTorch 2.1.0 Step1 检查环境 SSH登录机器后,检查NPU设备检查。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个
-b881580 表2 模型镜像版本 模型 版本 CANN cann_8.0.rc2 PyTorch 2.1.0 步骤1 检查环境 SSH登录机器后,检查NPU设备检查。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个
Snt9B。 如果使用DevServer资源,请参考DevServer资源开通,购买DevServer资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169.254
组织名称。 单击右上角“登录指令”,获取登录访问指令。以root用户登录ECS环境,输入登录指令。 图1 在ECS中执行登录指令 登录SWR后,使用docker tag命令给上传镜像打标签。下面命令中的组织名称deep-learning,请替换为a.登录容器镜像服务控制台,选择区