检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
类型type、属性properties,必须属性required 、定义definitions等,JSON Schema通过定义对象属性、类型、格式的方式来引导模型生成一个包含用户信息的JSON对象。 其优势主要如下: 上下文引导:通过提供特定的提示或上下文信息,模型可以更好地理解生成内容的方向。 约束生成:可以设定
八卡规格。 当前功能还处于试验阶段,只有llama3-8B/70B适配。 Step5 其他配置 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表1进行配置。 图3 选择资源池规格 作业日志选择OBS中的路径,训练作业的日志信息则保存该路径下。
八卡规格。 当前功能还处于试验阶段,只有llama3-8B/70B适配。 Step5 其他配置 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表1进行配置。 图3 选择资源池规格 作业日志选择OBS中的路径,训练作业的日志信息则保存该路径下。
八卡规格。 当前功能还处于试验阶段,只有llama3-8B/70B适配。 Step5 其他配置 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表1进行配置。 图3 选择资源池规格 作业日志选择OBS中的路径,训练作业的日志信息则保存该路径下。
--gpu-memory-utilization:NPU使用的显存比例,复用原vLLM的入参名称,默认为0.9。 --trust-remote-code:是否相信远程代码。 --distributed-executor-backend:多卡推理启动后端,可选值为"ray"或者"mp",其中"ray"表示
AutoAWQ量化工具的适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/AutoAWQ目录下。 1、在容器中使用ma-user用户运行以下命令下载并安装AutoAWQ源码。 cd llm_tools/AutoAWQ bash build.sh 2、运行“examples/quantize
AutoAWQ量化工具的适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/AutoAWQ目录下。 1、在容器中使用ma-user用户, vLLM使用transformers版本与awq冲突,需要切换conda环境,运行以下命令下载并安装AutoAWQ源码。 conda create
表1 路径参数 参数 是否必选 参数类型 描述 dataset_id 是 String 数据集ID。 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 表2 Query参数 参数 是否必选 参数类型 描述 version_id 否 String
/v2/{project_id}/processor-tasks 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 请求参数 表2 请求Body参数 参数 是否必选 参数类型 描述 create_version
表1 路径参数 参数 是否必选 参数类型 描述 dataset_id 是 String 数据集ID。 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 请求参数 表2 请求Body参数 参数 是否必选 参数类型 描述 labels 否 Array
Long 训练作业创建时间戳,单位为毫秒,创建成功后由ModelArts生成返回,无需填写。 user_name String 训练作业创建用户的用户名,创建成功后由ModelArts生成返回,无需填写。 annotations Map<String,String> 训练作业申明模板,
ons/{version_id}/results 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 task_id 是 String 数据处理任务ID。 version_id 是 String
的随机数不同。具体示例如下: 由上图可见,torch.randn在GPU和NPU上固定随机种子后,仍然生成不同的随机张量。 对于上述场景,用户需要将网络中的randn在CPU上完成后再转到对应device。例如,StableDiffusion中需要在forward过程中逐步生成随机噪声。
表1 路径参数 参数 是否必选 参数类型 描述 dataset_id 是 String 数据集ID。 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 version_id 是 String 数据集版本ID。 请求参数 无 响应参数 状态码: 200
--num-prompts:某个频率下请求数,默认80。 --output_len:输出长度,默认是1024。 --trust-remote-code:是否相信远程代码。 脚本运行完后,测试结果直接在终端输出。 父主题: 主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6
--num-prompts:某个频率下请求数,默认80。 --output_len:输出长度,默认是1024。 --trust-remote-code:是否相信远程代码。 脚本运行完后,测试结果保存在终端输出。 单条请求性能测试 针对openai的/v1/completions以及/v1/chat/c
dataset_type=None, data_sources=None, work_path=None, **kwargs) 根据数据类型创建数据集,用户可以在相同的数据集上创建不同类型的标注任务,如在图像数据集上创建图像分类、物体检测等标注任务。 create_dataset(session