检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
LLM大语言模型训练推理 在ModelArts Studio基于Qwen2-7B模型实现新闻自动分类 主流开源大模型基于Lite Server适配Ascend-vLLM PyTorch NPU推理指导(6.5.901) 主流开源大模型基于Lite Server适配ModelLink
in/alpaca_data.json 使用generate_datasets.py脚本生成数据集方法: generate_datasets.py脚本通过指定输入输出长度的均值和标准差,生成一定数量的正态分布的数据。具体操作命令如下,可以根据参数说明修改参数。 cd benchmark_tools
低。 如果以写入模式或追加模式打开文件,当调用write方法时,待写入内容只是暂时的被存在的缓冲区,直到关闭文件对象(退出with语句时会自动关闭文件对象)或者主动调用文件对象的close()方法或flush()方法时,文件内容才会被写入。 列举操作 列举一个OBS目录,只返回顶层结果(相对路径),不做递归列举。
有效输出作为数据输入,常用于存在条件分支的场景中(在构建工作流时未能确定数据输入来源为哪个依赖节点的输出,需根据依赖节点的实际执行情况进行自动选择) 表4 Dataset 属性 描述 是否必填 数据类型 dataset_name 数据集名称 是 str version_name 数据集版本名称
数据处理完后,在/home/ma-user/ws/processed_for_ma_input/BaiChuan2-13B/data/pretrain/目录下生成alpaca_text_document.bin和alpaca_text_document.idx文件。 自定义数据 如果是用户自己准备的
数据处理完后,在/home/ma-user/ws/processed_for_ma_input/Qwen-14B/data/pretrain/目录下生成alpaca_text_document.bin和alpaca_text_document.idx文件。 图1 处理后的数据 自定义数据
下载或读取文件报错,提示超时、无剩余空间 问题现象 训练过程中复制数据/代码/模型时出现如下报错: 图1 错误日志 原因分析 出现该问题的可能原因如下。 磁盘空间不足。 分布式作业时,有些节点的docker base size配置未生效,容器内“/”根目录空间未达到50GB,只有默认的10GB,导致作业训练失败。
in/alpaca_data.json 使用generate_datasets.py脚本生成数据集方法: generate_datasets.py脚本通过指定输入输出长度的均值和标准差,生成一定数量的正态分布的数据。具体操作命令如下,可以根据参数说明修改参数。 cd benchmark_tools
5T存储空间满了,具体规格的空间大小可参见训练环境中不同规格资源“/cache”目录的大小。 处理方法 如果在训练作业的工作目录下有core文件生成,可以在启动脚本最前面加上如下代码,来关闭core文件产生。 import os os.system("ulimit -c 0") 排查数
音频(声音分类、语音内容、语音分割) 文本(文本分类、命名实体、文本三元组) 视频 参数填写无误后,单击页面右下角“创建”。 标注作业创建完成后,系统自动跳转至数据标注管理页面,针对创建好的标注作业,您可以执行智能标注、发布、修改和删除等操作。 图片(图像分类、物体检测、图像分割) 图2 图像分类和物体检测类型的参数
数据处理完后,在/home/ma-user/ws/processed_for_ma_input/GLM3-6B/data/pretrain/目录下生成alpaca_text_document.bin和alpaca_text_document.idx文件。 图1 处理后的数据 自定义数据
数据处理完后,在/home/ma-user/ws/processed_for_ma_input/Llama2-70B/data/pretrain/目录下生成alpaca_text_document.bin和alpaca_text_document.idx文件。 图1 处理后的数据 自定义数据
“数据集输入位置”即原始数据存储的OBS路径。 “数据集输出位置”,指在ModelArts完成数据标注后,执行数据集发布操作后,在此指定路径下,按数据集版本,生成相关目录。包含ModelArts中使用的Manifest文件(包含数据及标注信息)。详细文件说明可参见数据集发布后,相关文件的目录结构说明。
ain/alpaca_data.json 使用generate_dataset.py脚本生成数据集方法: generate_datasets.py脚本通过指定输入输出长度的均值和标准差,生成一定数量的正态分布的数据。具体操作命令如下,可以根据参数说明修改参数。 cd benchmark_tools
3.wav 表格 支持从OBS导入csv文件,需要选择文件所在目录,其中csv文件的列数需要跟数据集schema一致。支持自动获取csv文件的schema。 ├─dataset-import-example │ table_import_1.csv │
CodeLab(JupyterLab),让AI探索&教学更简单 云原生Notebook,案例内容秒级接入与分享 Serverless化实例管理,资源自动回收 免费算力,规格按需切换 亮点特性1:远程开发 - 支持本地IDE远程访问Notebook Notebook提供了远程开发功能,通过开
用OBS中转,系统先将文件上传至OBS(对象桶或并行文件系统),然后从OBS下载到Notebook。下载完成后,ModelArts会将文件自动从OBS中删除。 例如,对于下面这种情况,可以通过“OBS中转”上传。 图5 通过OBS中转上传大文件 如果使用OBS中转需要提供一个OBS中转路径,可以通过以下三种方式提供:
/alpaca_data.json 方法二:使用generate_dataset.py脚本生成数据集方法: generate_dataset.py脚本通过指定输入输出长度的均值和标准差,生成一定数量的正态分布的数据。具体操作命令如下,可以根据参数说明修改参数。 python generate_dataset
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──
ate列 output_dir /home/ma-user/ws/Qwen2-72B/sft-4096 必须修改。指定输出目录。训练过程中生成的模型参数和日志文件将保存在这个目录下。用户根据自己实际要求适配。 per_device_train_batch_size 1 指定每个设备的训练批次大小