检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
训练作业日志中提示“No module named .*” 用户请按照以下思路进行逐步排查: 检查依赖包是否存在 检查依赖包路径是否能被识别 检查训练作业使用的资源规格是否正确 建议与总结 检查依赖包是否存在 如果依赖包不存在,您可以使用以下两种方式完成依赖包的安装。 方式一(推
删除服务存在如下两种删除方式。 根据部署在线服务生成的服务对象删除服务。 根据查询服务对象列表返回的服务对象删除服务。 示例代码 在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 方式1:根据部署在线服务生成的服务对象删除服务
bandwidth contention 通信维度,识别计算和通信相互掩盖,可能会抢占通信带宽。 communication - retransmission 通信维度,识别通信重传问题,单次重传耗时4秒以上。 memory 内存维度,识别异常内存算子。 dataloader 数据加载
Windows远程桌面服务端口,通过这个端口可以连接Windows弹性云服务器。 代理 8080 8080端口常用于WWW代理服务,实现网页浏览,实现网页浏览。如果您使用8080端口,访问网站或使用代理服务器时,需要在IP地址后面加上:8080。安装Apache Tomcat服务后,默认服务端口为8080。
如高性能计算、媒体处理、文件共享和内容管理和Web服务等。 说明: 高性能计算:主要是高带宽的需求,用于共享文件存储,比如基因测序、图片渲染这些。 如大数据分析、静态网站托管、在线视频点播、基因测序和智能视频监控等。 如高性能计算、企业核心集群应用、企业应用系统和开发测试等。 说明: 高性能计算:主要是高速率、高IO
API接口创建训练作业和部署服务时,如何填写资源池的参数? 调用API接口创建训练作业时,“pool_id”为“资源池ID”。 调用API接口部署在线服务时,“pool_name”为“资源池ID” 。 图1 资源池ID 父主题: API/SDK
化开发。可广泛应用在工业、零售安防等领域。 图像分类:识别图片中物体的类别。 物体检测:识别出图片中每个物体的位置和类别。 预测分析:对结构化数据做出分类或数值预测。 声音分类:对环境中不同声音进行分类识别。 文本分类:识别一段文本的类别。 使用自动学习功能构建模型的端到端示例,
API进行的Python封装,以简化用户的开发工作。用户直接调用ModelArts SDK即可轻松管理数据集、启动AI训练以及生成模型并将其部署为在线服务。 ModelArts SDK目前只提供Python语言的SDK,同时支持大于3.7.x版本且小于3.10.x版本的Python版本,推荐使用3
的便利和性能提升。Ascend-vLLM可广泛应用于各种大模型推理任务,特别是在需要高性能和高效率的场景中,如自然语言处理、图像生成和语音识别等。 Ascend-vLLM的主要特点 易用性:Ascend-vLLM简化了在大模型上的部署和推理过程,使开发者可以更轻松地使用它。 易开
返回结果如图2所示:predict为目标列的预测结果。 图2 预测结果 由于“运行中”的在线服务将持续耗费资源,如果不需再使用此在线服务,建议在“在线服务”的操作列单击“更多>停止”,即可停止在线服务的部署,避免产生不必要的费用。如果需要继续使用此服务,可单击“启动”恢复。 如果您
历史待下线案例 使用AI Gallery的订阅算法实现花卉识别 使用ModelArts PyCharm插件调试训练ResNet50图像分类模型 示例:从 0 到 1 制作自定义镜像并用于训练(PyTorch+CPU/GPU) 示例:从 0 到 1 制作自定义镜像并用于训练(MPI+CPU/GPU)
detection_scores 每个检测框的置信度。 图2 检测框的四点坐标示意图 由于“运行中”的在线服务将持续耗费资源,如果不需再使用此在线服务,建议在版本管理区域,单击“停止”,即可停止在线服务的部署,避免产生不必要的费用。如果需要继续使用此服务,可单击“启动”恢复。 如果您启用了
调用接口访问在线服务。 表1 预测结果中的参数说明 参数 说明 predicted_label 该段文本的预测类别。 score 预测为此类别的置信度。 由于“运行中”的在线服务将持续耗费资源,如果不需再使用此在线服务,建议在版本管理区域,单击“停止”,即可停止在线服务的部署,避
本章节介绍基于PyCharm环境访问Notebook的方式。 前提条件 本地已安装2019.2及以上版本的PyCharm专业版。SSH远程调试功能只限PyCharm专业版。 创建一个Notebook实例,并开启远程SSH开发。该实例状态必须处于“运行中”,具体参见创建Notebook实例章节。
自动学习生成的模型,不支持下载使用。 图1 自动学习生成的模型 自动学习生成的模型,支持哪些其他操作 支持部署为在线服务、批量服务或边缘服务。 在自动学习页面中,仅支持部署为在线服务,如需部署为批量服务或边缘服务,可在“模型部署”页面部署。 支持发布至市场 将产生的模型发布至AI Gallery,共享给其他用户。
部署图像分类服务 模型部署 模型部署操作即将模型部署为在线服务,并且提供在线的测试UI与监控能力。完成模型训练后,可选择准确率理想且训练状态为“运行成功”的版本部署上线。具体操作步骤如下。 在“运行节点”页面中,待服务部署节点的状态变为“等待输入”时,双击“服务部署”进入配置详情页,完成资源的参数配置操作。
调用接口访问在线服务。 表1 预测结果中的参数说明 参数 说明 predicted_label 该段音频的预测类别。 score 预测为此类别的置信度。 由于“运行中”的在线服务将持续耗费资源,如果不需再使用此在线服务,建议在版本管理区域,单击“停止”,即可停止在线服务的部署,避
自动学习生成的模型,不支持下载使用。 图1 自动学习生成的模型 自动学习生成的模型,支持哪些其他操作 支持部署为在线服务、批量服务或边缘服务。 在自动学习页面中,仅支持部署为在线服务,如需部署为批量服务或边缘服务,可在“模型管理 > 模型”页面中直接部署。 支持发布至市场 将产生的模型发布至AI
监控安全风险 ModelArts支持监控ModelArts在线服务和对应模型负载,执行自动实时监控、告警和通知操作。 云监控可以帮助用户更好地了解服务和模型的各项性能指标。 详细内容请参见ModelArts支持的监控指标。 父主题: 安全
型大于60G,请提工单扩容。 Step3 部署在线服务 将Step2 部署模型中创建的AI应用部署为一个在线服务,用于推理调用。 在ModelArts控制台,单击“部署上线 > 在线服务 > 部署”,开始部署在线服务。 图5 部署在线服务 设置部署服务名称,选择Step2 部署模