检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D
提供“自动学习白盒化”能力,开放模型参数、自动生成模型,实现模板化开发,提高开发效率 采用自动深度学习技术,通过迁移学习(只通过少量数据生成高质量的模型),多维度下的模型架构自动设计(神经网络搜索和自适应模型调优),和更快、更准的训练参数自动调优自动训练 采用自动机器学习技术,基于
Standard自动学习 使用ModelArts Standard自动学习实现口罩检测 使用ModelArts Standard自动学习实现垃圾分类
ModelArts与DLS服务的区别? 深度学习服务(DLS)是基于华为云强大高性能计算提供的一站式深度学习平台服务,内置大量优化的网络模型,以便捷、高效的方式帮助用户轻松使用深度学习技术,通过灵活调度按需服务化方式提供模型训练与评估。 但是,DLS服务仅提供深度学习技术,而ModelArts集成了深度学习和机器
功,如果数据集还未成功导入,创建自动学习物体检测项目后数据标注节点会报错。 图2 数据标注节点报错 步骤三:创建自动学习物体检测项目 确保数据集创建完成且可正常使用后,在ModelArts控制台,左侧导航栏选择“自动学习”默认进入新版自动学习页面,选择物体检测项目,单击“创建项目”。
任务的列表。 “智能标注”是指基于当前标注阶段的标签及图片学习训练,选中系统中已有的模型进行智能标注,快速完成剩余图片的标注操作。“智能标注”又包含“主动学习”和“预标注”两类。 “主动学习”表示系统将自动使用半监督学习、难例筛选等多种手段进行智能标注,降低人工标注量,帮助用户找到难例。
什么是自动学习? 自动学习功能可以根据标注的数据自动设计模型、自动调参、自动训练、自动压缩和部署模型,不需要代码编写和模型开发经验。 自动学习功能主要面向无编码能力的用户,其可以通过页面的标注操作,一站式训练、部署,完成AI模型构建。 父主题: 功能咨询
自动学习训练作业失败 自动学习训练作业创建失败,一般是因为后台服务故障导致的,建议稍等片刻,然后重新创建训练作业。如果重试超过3次仍无法解决,请联系华为云技术支持。 自动学习训练作业创建成功,但是在运行过程中,由于一些故障导致作业运行失败,排查方式如下: 首次出现请检查您的账户是
自动学习为什么训练失败? 当自动学习项目训练失败时,请根据如下步骤排除问题。 进入当前账号的费用中心,检查是否欠费。 是,建议您参考华为云账户充值,为您的账号充值。 否,执行2。 检查存储图片数据的OBS路径。是否满足如下要求: 此OBS目录下未存放其他文件夹。 文件名称中无特殊
创建自动学习项目有个数限制吗? ModelArts自动学习,包括图像分类项目、物体检测项目、预测分析项目、声音分类和文本分类项目。您最多只能创建100个自动学习项目。 父主题: 创建项目
单击展开下载详情,可以查看该数据集的“目标位置”。 步骤四:创建新版自动学习图像分类项目 确保数据集创建完成且可正常使用后,在ModelArts控制台,左侧导航栏选择“开发空间 > 自动学习”,进入自动学习总览页面。 单击选择“图像分类”创建项目。完成参数填写。 名称:自定义您的项目名称。
自动学习 准备数据 模型训练 部署上线 模型发布
ModelArts自动学习与ModelArts PRO的区别 ModelArts自动学习,提供了AI初学者,零编码、零AI基础情况下,可使用自动学习功能,开发用于图像分类、物体检测、预测分析、文本分类、声音分类等场景的模型。 而ModelArts PRO是一款为企业级AI应用打造
自动学习模型训练图片异常? 使用自动学习的图像分类或物体检测算法时,标注完成的数据在进行模型训练后,训练结果为图片异常。针对不同的异常情况说明及解决方案参见表1。 表1 自动学习训练中图片异常情况说明(图像分类和物体检测) 序号 图片异常显示字段 图片异常说明 解决方案字段 解决方案说明
自动学习和订阅算法有什么区别? 针对不同目标群体,ModelArts提供不同的AI开发方式。 如果您是新手,推荐您使用自动学习实现零代码模型开发。当您使用自动学习,系统会自动选择适合的算法和适合的参数进行模型训练。 如果您是AI开发进阶者,通过订阅算法进行模型训练有更多算法上的选择,并且您可以自定义训练所需的参数。
自动学习简介 自动学习功能介绍 ModelArts自动学习是帮助人们实现模型的低门槛、高灵活、零代码的定制化模型开发工具。自动学习功能根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型。开发者无需专业的开发基础和编码能力,只需上传数据,通过自动学习界面引导和简单操作即可完成模型训练和部署。
自动学习项目中,如何进行增量训练? 在自动学习项目中,每训练一次,将自动产生一个训练版本。当前一次的训练结果不满意时(如对训练精度不满意),您可以适当增加高质量的数据,或者增减标签,然后再次进行训练。 增量训练目前仅支持“图像分类”、“物体检测”、“声音分类”类型的自动学习项目。
自动学习的每个项目对数据有哪些要求? 图像分类对数据集的要求 文件名规范:不能有+、空格、制表符。 保证图片质量:不能有损坏的图片,目前支持的格式包括jpg、jpeg、bmp、png。 不要把明显不同的多个任务数据放在同一个数据集内。 每一类数据尽量多,尽量均衡。期望获得良好效果
自动学习训练后的模型是否可以下载? 不可以下载。但是您可以在AI应用管理页面查看,或者将此模型部署为在线服务。 父主题: 模型训练
使用自动学习实现预测分析 准备预测分析数据 创建预测分析项目 训练预测分析模型 部署预测分析服务 父主题: 使用自动学习实现零代码AI开发