检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在ModelArts的Notebook中使用VS Code调试代码无法进入源码怎么办? 如果已有launch.json文件,请直接看步骤三。 步骤一:打开launch.json文件 方法一:单击左侧菜单栏的Run(Ctrl+Shift+D)按钮,再单击create a launch
将客服机器人嵌入网页前端页面。 在Dify平台中完成客服机器人的创建与调试后,单击“发布”,选择“嵌入网站”。 选择嵌入方式。本文以第二种“悬浮窗式”为例,将下方的代码复制到您网站<head>或<body> 标签中,更新网站页面,即可与该客服机器人进行对话。 Dify支持全屏界面式、悬浮窗式、浏览器插件
库? 在训练作业的过程中,会使用到第三方库。以C++为例,请参考如下操作步骤进行安装: 将源码下载至本地并上传到OBS。使用OBS客户端上传文件的操作请参见上传文件。 将上传到OBS的源码使用Moxing复制到开发环境Notebook中。 以下为使用EVS挂载的开发环境,将数据复制至notebook中的代码示例:
Studio大模型即服务平台(下面简称为MaaS),使用Qwen2-7B模型可以实现新闻自动分类,能够高效处理和分类大量新闻内容。 该解决方案可以应用于如下场景: 新闻门户网站: 自动将新闻内容归类到相应板块,如科技、体育或国际新闻,以提升用户体验和内容检索效率。 社交媒体平台: 对用户分享的新闻链接进行智能分类,帮助用户迅速定位到感兴趣的话题。
将客服机器人嵌入网页前端页面。 在Dify平台中完成客服机器人的创建与调试后,单击“发布”,选择“嵌入网站”。 选择嵌入方式。本文以第二种“悬浮窗式”为例,将下方的代码复制到您网站<head>或<body> 标签中,更新网站页面,即可与该客服机器人进行对话。 Dify支持全屏界面式、悬浮窗式、浏览器插件
说明请参见代码目录介绍。 AscendSpeed是用于模型并行计算的框架,其中包含了许多模型的输入处理方法。 获取路径:Support-E网站。 说明: 如果没有下载权限,请联系您所在企业的华为方技术支持下载获取。 权重和词表文件 包含了本教程使用到的HuggingFace原始权重文件和Tokenizer。
说明请参见代码目录介绍。 AscendSpeed是用于模型并行计算的框架,其中包含了许多模型的输入处理方法。 获取路径:Support-E网站。 说明: 如果没有下载权限,请联系您所在企业的华为方技术支持下载获取。 权重和词表文件 包含了本教程使用到的HuggingFace原始权重文件和Tokenizer。
说明请参见代码目录介绍。 AscendSpeed是用于模型并行计算的框架,其中包含了许多模型的输入处理方法。 获取路径:Support-E网站。 说明: 如果没有下载权限,请联系您所在企业的华为方技术支持下载获取。 权重和词表文件 包含了本教程使用到的HuggingFace原始权重文件和Tokenizer。
sh脚本一键适配。在用户通过Dockerfile构建模型的环境镜像时会执行该脚本,这会从github上拉取模型的官方源码,并通过git apply qwen-vl.patch的方式进行NPU适配,最后将以上源码和环境打包至镜像中。 AscendCloud-AIGC-6.3.912-xxx ├─aigc_inference
th-to-file}/deepseekV3-w8a8或${path-to-file}/deepseekR1-w8a8目录。 下载msit源码,请下载指定分支br_noncom_MindStudio_8.0.0_POC_20251231。 git clone -b br_noncom_MindStudio_8
下载Megatron-LM、MindSpeed、ModelLink源码,并将以上源码打包至镜像环境中。 若用户希望修改源码,则需要使用新镜像创建容器,在容器内的/home/ma-user工作目录中访问并编辑以上源码文件。编辑完成后重新构建新镜像。 Notebook中构建新镜像方案
载Megatron-LM、MindSpeed、ModelLink源码,并将以上源码打包至镜像环境中。 如果用户希望修改源码,则需要使用新镜像创建容器,在容器内的/home/ma-user工作目录中访问并编辑以上源码文件。编辑完成后重新构建新镜像。 使用以上方案时,都会下载Mega
载Megatron-LM、MindSpeed、ModelLink源码,并将以上源码打包至镜像环境中。 如果用户希望修改源码,则需要使用新镜像创建容器,在容器内的/home/ma-user工作目录中访问并编辑以上源码文件。编辑完成后重新构建新镜像。 使用以上方案时,都会下载Mega
载Megatron-LM、MindSpeed、ModelLink源码,并将以上源码打包至镜像环境中。 如果用户希望修改源码,则需要使用新镜像创建容器,在容器内的/home/ma-user工作目录中访问并编辑以上源码文件。编辑完成后重新构建新镜像。 使用以上方案时,都会下载Mega
载Megatron-LM、MindSpeed、ModelLink源码,并将以上源码打包至镜像环境中。 如果用户希望修改源码,则需要使用新镜像创建容器,在容器内的/home/ma-user工作目录中访问并编辑以上源码文件。编辑完成后重新构建新镜像。 使用以上方案时,都会下载Mega
sh脚本一键适配。在用户通过Dockerfile构建模型的环境镜像时会执行该脚本,这会从github上拉取模型的官方源码,并通过git apply qwen-vl.patch的方式进行NPU适配,最后将以上源码和环境打包至镜像中。 AscendCloud-AIGC-6.3.912-xxx ├─aigc_inference
昇腾云服务6.3.904版本说明 昇腾云服务6.3.904版本发布支持的软件包和能力说明如下,软件包获取路径:Support-E网站。 发布包 软件包特性说明 配套说明 备注 昇腾云模型代码 三方大模型,包名:AscendCloud-3rdLLM PyTorch框架下支持如下模型训练:
推理业务迁移到昇腾的通用流程,可参考GPU推理业务迁移至昇腾的通用指导。 由于Huggingface网站的限制,访问Stable Diffusion链接时需使用代理服务器,否则可能无法访问网站。 在Stable Diffusion迁移适配时,更多的时候是在适配Diffusers和Stable
在定位精度问题之前,首先需要排除训练脚本及参数配置等差异的干扰。目前大部分精度无法对齐的问题都是由于模型超参数、Python三方库版本、模型源码等与标杆环境(GPU/CPU)设置的不一致导致,为了在定位过程中少走弯路,需要在定位前先对训练环境及代码做有效排查。此外,问题定位主要基于
stable-diffusion-v1-5 pytorch_models 此处由于Huggingface网站的限制以及模型文件的大小原因,很可能会下载失败。您可以登录Huggingface网站,从浏览器下载模型后,再手动上传到物理机/home/pytorch_models目录下。 通过git下载sd