检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
title信息,主要用于前端的名称展示。 否 str description 数据集导入节点的描述信息。 否 str policy 节点执行的policy。 否 StepPolicy depend_steps 依赖的节点列表。 否 Step或者Step的列表 表2 DatasetImportInput
gInput的列表 outputs 数据集标注节点的输出列表 是 LabelingOutput或者LabelingOutput的列表 properties 数据集标注相关的配置信息 是 LabelTaskProperties title title信息,主要用于前端的名称展示 否
Input的列表 outputs 数据集版本发布节点的输出列表 是 ReleaseDatasetOutput或者ReleaseDatasetOutput的列表 title title信息,主要用于前端的名称展示 否 str description 数据集版本发布节点的描述信息 否
模型转换报错如何查看日志和定位? 通过如下的配置项打开对应的模型转换日志,可以看到更底层的报错。如配置以下的环境变量之后,再重新转换模型,导出对应的日志和dump图进行分析: 报错日志中搜到“not support onnx data type”,表示MindSpore暂不支持该算子。
训练中的权重转换说明 以 llama2-13b 举例,运行 0_pl_pretrain_13b.sh 脚本。脚本同样还会检查是否已经完成权重转换的过程。 若已完成权重转换,则直接执行预训练任务。若未进行权重转换,则会自动执行 scripts/llama2/2_convert_mg_hf
训练中的权重转换说明 以 llama2-13b 举例,运行 0_pl_pretrain_13b.sh 脚本。脚本同样还会检查是否已经完成权重转换的过程。 若已完成权重转换,则直接执行预训练任务。若未进行权重转换,则会自动执行 scripts/llama2/2_convert_mg_hf
ModelStep的输出 depend_steps=[job_step_1, job_step_2] # 依赖的作业类型节点对象 )# job_step是wf.steps.JobStep的 实例对象,train_url是wf.steps.JobOutput的name字段值
当前支持两种方式实现多分支的能力,条件节点只支持双分支的选择执行,局限性较大,推荐使用配置节点参数控制分支执行的方式,可以在不添加新节点的情况下完全覆盖ConditionStep的能力,使用上更灵活。 构建条件节点控制分支执行主要用于执行流程的条件分支选择,可以简单的进行数值比较来控制执
--quantize-model:体现此参数表示会生成量化模型权重。不需要生成量化模型权重时,不体现此参数 --generate-scale:体现此参数表示会生成量化系数,生成后的系数保存在--scale-output参数指定的路径下。如果有指定的量化系数,则不需此参数,直接读取--s
if_then_steps表示的是当Condition比较的结果为true时允许执行的节点列表,存储的是节点名称;此时else_then_steps中的step跳过不执行。 else_then_step表示的是当Condition比较的结果为false时允许执行的节点列表,存储的是节点名称;此
训练中的权重转换说明 以 llama2-13b 举例,运行 0_pl_pretrain_13b.sh 脚本。脚本同样还会检查是否已经完成权重转换的过程。 若已完成权重转换,则直接执行预训练任务。若未进行权重转换,则会自动执行 scripts/llama2/2_convert_mg_hf
一个组织。创建组织的详细操作请参见创建组织。 同一个组织内的用户可以共享使用该组织内的所有镜像。 镜像会以快照的形式保存,保存过程约5分钟,请耐心等待。此时不可再操作实例(对于打开的JupyterLab界面和本地IDE仍可操作)。 快照中耗费的时间仍占用实例的总运行时长,如果在快
支持单节点通过参数配置或者获取训练输出的metric指标信息来决定执行是否跳过,同时可以基于此能力完成对执行流程的控制。 应用场景 主要用于存在多分支选择执行的复杂场景,在每次启动执行后需要根据相关配置信息决定哪些分支需要执行,哪些分支需要跳过,达到分支部分执行的目的,与ConditionStep的使用场景类
模型训练和服务部署,工作流发布至运行态后,部分运行的开关默认关闭,节点全部运行。用户可在权限管理页面打开开关,选择指定的场景进行运行。 部分运行能力支持同一个节点被定义在不同的运行场景中,但是需要用户自行保证节点之间数据依赖的正确性。另外,部分运行能力仅支持在运行态进行配置运行,不支持在开发态进行调试。
在ModelArts的Notebook中如何在代码中打印GPU使用信息? 用户可通过shell命令或python命令查询GPU使用信息。 使用shell命令 执行nvidia-smi命令。 依赖CUDA nvcc watch -n 1 nvidia-smi 执行gpustat命令。 pip
使用SmoothQuant量化工具转换权重 SmoothQuant(W8A8)量化方案能降低模型显存以及需要部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Noteboo
使用SmoothQuant量化工具转换权重 SmoothQuant(W8A8)量化方案能降低模型显存以及需要部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Noteboo
使用SmoothQuant量化工具转换权重 SmoothQuant(W8A8)量化方案能降低模型显存以及需要部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Noteboo
使用SmoothQuant量化工具转换权重 SmoothQuant(W8A8)量化方案能降低模型显存以及需要部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Noteboo
使用SmoothQuant量化工具转换权重 SmoothQuant(W8A8)量化方案能降低模型显存以及需要部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Noteboo