检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
max_split_size_mb to avoid fragmentation. 解决方法: 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size)
max_split_size_mb to avoid fragmentation. 解决方法 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size)
max_split_size_mb to avoid fragmentation. 解决方法 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size)
max_split_size_mb to avoid fragmentation. 解决方法: 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size)
max_split_size_mb to avoid fragmentation. 解决方法: 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size)
max_split_size_mb to avoid fragmentation. 解决方法 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size)
max_split_size_mb to avoid fragmentation. 解决方法: 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size)
max_split_size_mb to avoid fragmentation. 解决方法 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size)
max_split_size_mb to avoid fragmentation. 解决方法 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size)
在ModelArts的Notebook中,如何使用昇腾多卡进行调试? 昇腾多卡训练任务是多进程多卡模式,跑几卡需要起几个python进程。昇腾底层会读取环境变量:RANK_TABLE_FILE,开发环境已经设置,用户无需关注。比如跑八卡,可以如下片段代码: export RANK_SIZE=8
速度差不多? 如果用户的代码中训练任务是单进程的,使用Notebook 8核64GB,72核512GB训练的速度是基本一致的,例如用户用的是2核4GB的资源,使用4核8GB,或者8核64GB效果是一样的。 如果用户的代码中训练任务是多进程的,使用Notebook 72核512GB训练速度要优于8核64GB。
创建Notebook失败,查看事件显示JupyterProcessKilled 问题现象 创建Notebook失败,查看事件显示JupyterProcessKilled。 图1 查看事件 原因分析 出现此故障是因为Jupyter进程被清理掉了,一般情况Notebook会自动重启的
46212 ) is killed by signal: Killed BP。 原因分析 由于batch size过大,导致Dataloader进程退出。 处理方法 请调小batch size的数值。 父主题: 业务代码问题
并在日志窗口上方提供全量日志访问链接。打开该链接可在新页面查看全部日志。 图5 查看全量日志 如果全部日志超过500M,可能会引起浏览页面卡顿,建议您直接下载日志查看。 预览链接在生成后的一小时内,支持任何人打开并查看。您可以分享链接至他人。 请注意日志中不能包含隐私内容,否则会造成信息泄露。
al界面。 执行如下命令查看GPU使用情况。 nvidia-smi 查看当前Notebook实例中有哪些进程使用GPU。 方法一: python /modelarts/tools/gpu_processes.py 如果当前进程使用GPU 如果当前没有进程使用GPU 方法二: 打开
日志提示“RuntimeError: Cannot re-initialize CUDA in forked subprocess” 问题现象 在使用pytorch启动多进程的时候,出现如下报错: RuntimeError: Cannot re-initialize CUDA in forked subprocess
在训练作业列表中,单击作业名称进入训练作业详情页面。 在训练作业详情页面,单击“故障恢复详情”页签查看故障恢复信息。 图1 查看故障恢复详情 父主题: 模型训练高可靠性
瓶颈点是计算还是任务下发,以及是否存在计算快慢卡和下发快慢卡。如下图所示,可以看到8号卡的计算耗时明显大于其他卡,因此8号卡的“短板效应”将会拖慢集群的整体训练速度,后续性能分析需要重点关注8号卡的计算维度。 图4 多卡不同step计算、下发和通信耗时统计值 图5 多卡不同step通信带宽统计值
查看Notebook实例事件 在Notebook的整个生命周期,包括实例的创建、启动、停止、规格变更等关键操作以及实例的运行状态等在后台都有记录,用户可以在Notebook实例详情页中查看具体的事件,通过实例的事件,从而看到实例的运行或者异常等状态详情。在右侧可以手动刷新事件,也
卡死检测主要是通过监控作业进程的状态和资源利用率来判定作业是否卡死。会启动一个进程来周期性地监控上述两个指标的变化情况。 进程状态:只要训练作业中存在进程IO有变化,进入下一个检测周期。如果在多个检测周期内,作业所有进程IO都没有变化,则进入资源利用率检测阶段。 资源利用率:在作业进程IO没有变