检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Pro>自然语言处理套件”控制台。 默认进入“应用开发>工作台”页面。 选择已新建的应用名称,单击“操作”列的“查看”。 进入“应用总览”页面。 图1 查看应用 在开发版本列表中单击“操作”列的“查看”。 进入“应用开发”页面。 图2 开发版本列表 新建数据集 在“数据选择”页面,单击“新建数据
训练分类器 确定模板图片的参照字段和识别区后,多模板分类工作流在模板数量较多,或版式相似度较高的情况下,建议针对不同的模板上传对应的训练集数据,用于训练模板分类模型,使服务能够精准地分类多个模板图片,然后对多个模板图片进行文字识别和结构化提取。 前提条件 已在文字识别套件控制台选
回率”、“F1值”。您可以在上方单击选择“对比版本”。 您可以在左侧选择不同的标签,右侧会显示对应标签样本的评估参数值柱状图。 图1 整体评估 详细评估 在“模型评估”页面,您可以查看测试集中数据模型预测结果。 “详细评估”左侧选择文本,右侧显示模型预测的实体抽取结果和正确的抽取
数据。 热轧钢板表面缺陷检测工作流标注数据时,必须使用矩形标注框标注数据。 查看标签解析 新建并选择训练数据集后,针对已标注的数据,在“标签解析”中查看标签样本的统计数据,横轴为“标签”,纵轴为标签对应的有效“样本数”。 图5 标签解析 后续操作 选择训练数据集后,单击右下角的“
单击数据集操作列的“标注”,进入数据集概览页单击右上角的“开始标注”,在“数据标注”页面手动标注数据。 查看标签解析 新建并选择训练数据集后,针对已标注的数据,在“标签解析”中查看标签样本的统计数据,横轴为“标签”,纵轴为标签对应的有效“样本数”。 图5 标签解析 后续操作 选择训练数据集后,单击右下角的“
单击数据集操作列的“标注”,进入数据集概览页单击右上角的“开始标注”,在“数据标注”页面手动标注数据。 查看标签解析 新建并选择训练数据集后,针对已标注的数据,在“标签解析”中查看标签样本的统计数据,横轴为“标签”,纵轴为标签对应的有效“样本数”。 图5 标签解析 后续操作 选择训练数据集后,单击右下角的“
“评估范围”,单击“添加对比版本”。 图1 整体评估 详细评估 在“模型评估”页面,您可以搜索查看测试集中数据模型预测结果。 “详细评估”左侧在搜索框中搜索标签,右侧显示正确标签所对应样本的正确标签和预测标签,您可以对比正确标签和预测标签,判断当前模型对该样本的预测是否正确。 例
注框标注数据。 自动标注数据 单击“下一步”,创建SKU后,自动标注数据。 查看标签解析 新建并选择训练数据集后,针对已标注的数据,在“标签解析”中查看标签样本的统计数据,横轴为“标签”,纵轴为标签对应的有效“样本数”。 图5 标签解析 后续操作 在“数据选择”页面选择训练数据集
标签”页中,添加标签名称,选择标签颜色,单击“确定”完成标签的新增。 图4 添加标签(2) 图5 新增标签 查看已标注文本 在数据集详情页,单击“已标注”页签,您可以查看已完成标注的文本列表。您也可以在右侧的“全部标签”中了解当前数据集支持的所有标签信息。 修改标注 当数据完成标
“评估范围”,单击“添加对比版本”。 图1 整体评估 详细评估 在“模型评估”页面,您可以搜索查看测试集中数据模型预测结果。 “详细评估”左侧在搜索框中搜索标签,右侧显示正确标签所对应样本的正确标签和预测标签,您可以对比正确标签和预测标签,判断当前模型对该样本的预测是否正确。 例
单击标注任务操作列的“标注”,进入Modelarts的数据标注页面,开始手动标注数据。 图6 数据集标注任务 查看标签解析 新建并选择训练数据集后,针对已标注的数据,在“标签解析”中查看标签样本的统计数据,横轴为“标签”,纵轴为标签对应的有效“样本数”。 图7 标签解析 后续操作 选择训练数据集后,单击右下角的“
估模板对应的原模板,然后选择本地上传测试图片或者上传在线图片,评估模板。 图4 评估模板 本地上传图片 默认进入“本地上传”页签,单击“上传图片”,或者拖拽测试图片至虚线框内上传图片区域,上传本地的图片作为测试图片。 上传图片后,右侧会显示文字识别结果,包括“识别区”和对应的“识别结果”。
由于模型训练过程需要有标签的数据,如果您上传未标注数据,需要手动标注数据。 选择数据 训练模型 选择训练数据后,无需用户配置任何参数即可开始训练刹车盘类型识别模型,并查看训练的模型准确率和误差的变化。 训练模型 评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。 评估结果包括一些
由于模型训练过程需要有标签的数据,如果您上传未标注数据,需要手动标注数据。 选择数据 训练模型 选择训练数据后,选择训练模型和车辆场景,即可开始训练车牌检测模型,并查看训练的模型准确率和误差的变化。 训练模型 评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。 评估结果包括一些
由于模型训练过程需要有标签的数据,如果您上传未标注数据,需要手动标注数据。 选择数据 训练模型 选择训练数据后,无需用户配置任何参数即可开始训练云状类型识别模型,并查看训练的模型准确率和误差的变化。 训练模型 评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。 评估结果包括一些
由于模型训练过程需要有标签的数据,如果您上传未标注数据,需要手动标注数据。 选择数据 训练模型 选择训练数据后,无需用户配置任何参数即可开始训练图像分类模型,并查看训练的模型准确率和误差的变化。 训练模型 评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。 评估结果包括一些
Pro会自动标注数据,自动标注完成后,可对每个数据的标注结果进行核对和确认。 工作流介绍 训练模型 选择训练数据后,无需用户配置任何参数即可开始训练第二相面积含量测定模型,并查看训练的模型准确率和误差的变化。 训练模型 评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。 评估结果包括一些
由于模型训练过程需要有标签的数据,如果您上传未标注数据,需要手动标注数据。 选择数据 训练模型 选择训练数据后,无需用户配置任何参数即可开始训练热轧钢板表面缺陷检测模型,并查看训练的模型准确率和误差的变化。 训练模型 评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。 评估结果包括一些
Pro会自动标注数据,自动标注完成后,可对每个数据的标注结果进行核对和确认。 自动标注数据 训练模型 选择训练数据后,无需用户配置任何参数即可开始训练商品识别模型,并查看训练的模型准确率和误差的变化。 训练模型 评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。 评估结果包括一些
“精准率”、“召回率”、“F1值”。 图9 整体评估 在应用开发的“模型评估”页面,您可以搜索查看测试集中数据模型预测结果。 “详细评估”左侧在搜索框中搜索标签,右侧显示正确标签所对应样本的正确标签和预测标签,您可以对比正确标签和预测标签,判断当前模型预测该样本是否预测正确。 例