检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
网卡名称错误 当训练开始时提示网卡名称错误。或者通信超时。可以使用ifconfig命令检查网卡名称配置是否正确。 比如,ifconfig看到当前机器IP对应的网卡名称为enp67s0f5,则可以设置环境变量指定该值。 图1 网卡名称错误 export GLOO_SOCKET_IFNAME=enp67s0f5
确保容器可以访问公网。 Step1 检查环境 请参考DevServer资源开通,购买DevServer资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 购买DevServer资源时如果无可选资源规格,需要联系华为云技术支持申请开通。 当容器需要提供服务
也不能提交远程训练作业。 当前仅支持PyTorch和MindSpore AI框架,如果MindSpore要进行多机分布式训练调试,则每台机器上都必须有8张卡。 本文档提供的调测代码中涉及到的OBS路径,请用户替换为自己的实际OBS路径。 本文档提供的调测代码是以PyTorch为
TensorFlow多节点任务会启动parameter server(简称ps)和worker两种角色,ps和worker会被调度到相同的机器上。由于训练数据对于ps没有用,因此在代码中ps相关的逻辑不需要下载训练数据。如果ps也下载数据到“/cache”,实际下载的数据会翻倍。例如只下载了2
、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见表3。 per-tensor静态量化场景 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0
推荐使用“西南-贵阳一”Region上的DevServer和昇腾Snt9b资源。 确保容器可以访问公网。 Step1 检查环境 SSH登录机器后,检查NPU设备检查。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态
经过对裸金属服务器排查,发现nvidia-drvier和cuda都已安装,并且正常运行。nvidia-fabricmanager服务可以使单节点GPU卡间互联,在多卡GPU机器上,出现这种问题可能是nvidia-fabricmanger异常导致。 执行以下命令,查看NVIDIA和CUDA的版本,以及nvidia-fabricmanager的状态。
合。 kv-cache-int8量化支持的模型请参见表3。 Step1使用tensorRT量化工具进行模型量化,必须在GPU环境 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0
、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见表3。 per-tensor静态量化场景 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0
Standard资源池功能介绍 ModelArts Standard资源池,提供了在使用ModelArts进行AI开发(包括自动学习、创建Workflow工作流、创建Notebook实例、创建训练作业和创建推理服务)所需的计算资源,您可根据需要购买使用Standard资源池。 图1
512 表示训练中所有机器一个step所处理的样本量。影响每一次训练迭代的时长。 TP 8 表示张量并行。 PP 1 表示流水线并行。一般此值与训练节点数相等,与权重转换时设置的值相等。 LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN
881580 表2 模型镜像版本 模型 版本 CANN cann_8.0.rc2 PyTorch 2.1.0 步骤1 检查环境 SSH登录机器后,检查NPU设备检查。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态
昇腾Snt9b资源。 安装过程需要连接互联网git clone,确保集群可以访问公网。 Step1 上传权重文件 将权重文件上传到集群节点机器中。权重文件的格式要求为Huggingface格式。开源权重文件获取地址请参见支持的模型列表和权重文件。 如果使用模型训练后的权重文件进行
昇腾Snt9b资源。 安装过程需要连接互联网git clone,确保集群可以访问公网。 Step1 上传权重文件 将权重文件上传到集群节点机器中。权重文件的格式要求为Huggingface格式。开源权重文件获取地址请参见支持的模型列表和权重文件。 如果使用模型训练后的权重文件进行
sh modellink 在执行 install.sh 安装命令时,需要确认机器是否已连通网络。若无法连通网络或无法git clone下载代码,用户则需要找到已连通网络的机器(本章节以Linux系统机器为例)将下载完成的源码放置代码目录:AscendFactory/third-party下,命令如下
模型镜像版本 模型 版本 CANN cann_8.0.rc3 驱动 23.0.6 PyTorch 2.1.0 Step1 检查环境 SSH登录机器后,检查NPU设备检查。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态
模型镜像版本 模型 版本 CANN cann_8.0.RC3 驱动 23.0.6 PyTorch 2.3.1 步骤一:检查环境 SSH登录机器后,检查NPU设备检查。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态
512 表示训练中所有机器一个step所处理的样本量。影响每一次训练迭代的时长。 TP 8 表示张量并行。 PP 1 表示流水线并行。一般此值与训练节点数相等,与权重转换时设置的值相等。 LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN
、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见表3。 per-tensor静态量化场景 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0
本案例用于指导用户使用ModelArts Studio大模型即服务平台(下面简称为MaaS)的Qwen2-7B模型框架,创建并部署一个模型服务,实现对话问答。通过学习本案例,您可以快速了解如何在MaaS服务上的创建和部署模型。更多MaaS服务的使用指导请参见用户指南。 操作流程 开始使用如下样例前,请务必按准备工作指导完成必要操作。