已找到以下 10000 条记录
  • 机器学习概念

    机器学习是一个跟“大数据”一样近几年格外火的词汇。我们在了解深度学习之前,还是有必要了解和认识机器学习这个词的。机器学习究竟是一个什么过程或者行为呢?机器学习一一我们先想想人类学习的目的是什么?是掌握知识、掌握能力、掌握技巧,最终能够进行比较复杂或者高要求的工作。那么类比一下机器

    作者: G-washington
    1889
    1
  • 机器学习 概述

    (具有很多图像方面知识的人)。“机器学习”强调的是,在给计算机程序(或者机器)输入一些数据后,它必须做一些事情,那就是学习这些数据,而这个学习的步骤是明确的。机器学习(Machine Learning)是一门专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组

    作者: 角动量
    2862
    4
  • 机器学习服务可以做什么?

    机器学习服务应用于海量数据挖掘分析场景。欺骗检测保险公司分析投保人的历史行为数据,建立欺骗行为模型,识别出假造事故骗取保险赔偿的投保人。产品推荐根据客户本身属性和行为特征等,预测客户是否愿意办理相关业务,为客户提供个性化的业务推荐。客户分群通过数据挖掘来给客户做科学的分群,依据不

    作者: 斑馬斑馬
    627
    3
  • 机器学习 组成

    秀】非监督学习(unsupervised learing)在机器学习,无监督学习的问题是,在未加标签的数据中,试图找到隐藏的结构。因为提供给学习者的实例是未标记的,因此没有错误或报酬信号来评估潜在的解决方案。无监督学习是密切相关的统计数据密度估计的问题。然而无监督学习还包括寻求,

    作者: 角动量
    1742
    3
  • 机器学习基础

    都是有监督学习的例子,目的是找到训练样例和目标之间的映射关系,并用来预测未知数据。有监督学习只是机器学习的一部分,机器学习也有其他不同的部分。以下是3种不同类型的机器学习:有监督学习;无监督学习;强化学习。下面详细讲解各种算法。4.1.1 有监督学习在深度学习机器学习领域中,大

    作者: 人工智能君
    167
    0
  • 机器学习基础图表-机器学习的类型

    机器学习主要有三种基本类型:监督学习、非监督学习和强化学习。1监督学习监督学习是使用已知正确答案的示例来训练模型。已知数据和其一一对应的标签,训练一个智能算法,将输入数据映射到标签的过程,它的常见应用场景如分类问题和回归问题。常见的算法有K近邻算法、线性回归、逻辑回归、支持向量机

    作者: @Wu
    1477
    3
  • 机器学习基础

    都是有监督学习的例子,目的是找到训练样例和目标之间的映射关系,并用来预测未知数据。有监督学习只是机器学习的一部分,机器学习也有其他不同的部分。以下是3种不同类型的机器学习:有监督学习;无监督学习;强化学习。下面详细讲解各种算法。4.1.1 有监督学习在深度学习机器学习领域中,大

    作者: ssdandan
    298
    0
  • 机器学习知多少

    反应。反馈不仅从监督学习学习过程中得到,还从环境中的奖励或惩罚中得到。机器人Alpha GO 机器学习服务的优势有哪些?机器学习服务可降低机器学习使用门槛,提供可视化的操作界面来编排机器学习模型的训练、评估和预测过程,无缝衔接数据分析和预测应用,降低机器学习模型的生命周期管理难

    作者: Amber
    发表时间: 2018-12-29 14:15:03
    6790
    1
  • 机器学习(五):机器学习算法分类

    机器学习算法分类 根据数据集组成不同,可以把机器学习算法分为: 监督学习 无监督学习 半监督学习 强化学习 一、监督学习 定义:输入数据是由输入特征值和目标值所组成。 函数的输出可以是一个连续的值(称为回归),或是输出是有限个离散值(称作分类)。 1、回归问题 例如:预测房价,根据样本集拟合出一条连续曲线。

    作者: Lansonli
    发表时间: 2023-02-18 05:59:28
    71
    0
  • 机器学习基础图表-机器学习步骤

    通常学习一个好的函数,分为以下三步:1、选择一个合适的模型,这通常需要依据实际问题而定,针对不同的问题和任务需要选取恰当的模型,模型就是一组函数的集合。 2、判断一个函数的好坏,这需要确定一个衡量标准,也就是我们通常说的损失函数(Loss Function),损失函数的确定也需要

    作者: @Wu
    1150
    2
  • 机器学习知识

           机器学习算法        需要明确,当前人工智能技术中,机器学习占据了主导地位,但不仅仅包括机器学习,而深度学习机器学习中的一个子项。目前可以说,学习AI主要的是学习机器学习,但是,人工智能并不等同于机器学习。具体到机器学习的流程,包括数据收集、清洗、预处理,建

    作者: ypr189
    1382
    1
  • 机器学习 概述

    (具有很多图像方面知识的人)。“机器学习”强调的是,在给计算机程序(或者机器)输入一些数据后,它必须做一些事情,那就是学习这些数据,而这个学习的步骤是明确的。机器学习(Machine Learning)是一门专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组

    作者: 我就是豆豆
    543
    0
  • 机器学习简介

    于构建人工智能系统至关重要。机器学习算法大致分为三种类型:    监督学习算法    无监督学习算法    强化学习算法。

    作者: QGS
    691
    2
  • 机器学习 基础

    九个要研究机器学习,中间还一些弄不清深度学习机器学习的关系,实际上是想搞深度学习。  原本深度学习(深度神经网络)只是机器学习领域一个分支,但因为其最近大火,导致对整个领域出现了这样的划分:深度的和非深度,或者说深度的和传统的。虽然现在自然语言处理研究主要用深度学习,但因为很多

    作者: 又
    441
    0
  •  机器学习简介

    于构建人工智能系统至关重要。机器学习算法大致分为三种类型:    监督学习算法    无监督学习算法    强化学习算法。

    作者: QGS
    545
    1
  • 简述机器学习

    非常明确。但这样的方式在机器学习中行不通。机器学习根本不接受你输入的指令,相反,它接受你输入的数据! 也就是说,机器学习是一种让计算机利用数据而不是指令来进行各种工作的方法。这听起来非常不可思议,但结果上却是非常可行的。“统计”思想将在你学习机器学习”相关理念时无时无刻不伴随

    作者: 小强鼓掌
    556
    1
  • 机器学习应用

    应用可以通过输入一个图像来得到其中蕴含的文字信息向量,诸如此类,这些都是早些年应用比较成熟的领域,在这种应用场景中机器通过学习能够取代一些纯粹的体力劳动

    作者: G-washington
    2064
    1
  • 机器学习“特征编码”(一)

    为什么要进行特征编码?我们拿到的数据通常比较脏乱,可能会带有各种非数字特殊符号,比如中文。下面这个表中显示了我们最原始的数据集。而实际上机器学习模型需要的数据是数字型的,因为只有数字类型才能进行计算。因此,对于各种特殊的特征值,我们都需要对其进行相应的编码,也是量化的过程。2.

    作者: @Wu
    1030
    5
  • 机器学习算法——线性回归

      最近一直在学机器学习,但感觉学习效率低,理解不深入,所以想通过写博客总结来加深自己的理解,写一下我的理解过程, 也希望能帮到其他人。   现在过头来看,线性回归其实是机器学习最简单的算法了,所以大部分机器学习的课程都拿它开刀。为什么之前一直都觉得机器学习算法比数据结构什么

    作者: xindoo
    发表时间: 2022-04-13 15:56:42
    514
    0
  • 有监督机器学习和无监督机器学习的核心哲学

    有监督机器学习的核心哲学:使用“数据驱动”方法让计算机可以学习输入/输出之间的正确映射。它需要一系列“标记”记录,其中包含训练集中的输入和期望的输出,以便将输入到输出的映射学习为一种准确的行为表现。可以用下面这个图来表示:无监督机器学习的核心哲学:让计算机学习输入的内部结构而不是

    作者: 黄生
    44
    6