检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
具体的变量值信息。 输入变量值后预览区域会自动组装展示提示词。也可以直接选择已创建的变量集填入变量值信息,变量集是一个excel文件,每行数据是需要输入的变量值信息,可以通过“导入”功能进行上传。 图1 效果预览 单击“查看效果”,输出模型回复结果,用户可以基于预览的效果调整提示词文本和变量。
CV大模型训练流程与选择建议 CV大模型训练流程介绍 目前,CV大模型支持微调训练。 微调阶段:微调阶段通过在特定领域的数据集上进一步训练,使模型能够更有效地应对具体的任务需求。在微调过程中,通过设定训练指标来监控模型的表现,确保其达到预期的效果。完成微调后,将对用户模型进行评估
提示词写作进阶技巧 设置背景及人设 明确任务需求 添加CoT思维链提示 父主题: 提示词写作实践
公有云API同时支持使用AK/SK认证,AK/SK认证是使用SDK对请求进行签名,签名过程会自动往请求中添加Authorization(签名认证信息)和X-Sdk-Date(请求发送的时间)请求头。AK/SK认证的详细说明请参见:AK/SK。 添加消息头后的请求如下所示: POST https://{endpoin
CV大模型训练常见报错与解决方案 常见报错 问题现象 原因分析 解决方案 创建训练任务时,数据集列表为空。 创建训练任务时,数据集选择框中显示为空,无可用的训练数据集。 数据集未发布。 请提前创建与大模型对应的训练数据集,并完成数据集发布操作。 训练日志提示“root: XXX valid number
NLP大模型训练常见报错与解决方案 常见报错 问题现象 原因分析 解决方案 创建训练任务时,数据集列表为空。 创建训练任务时,数据集选择框中显示为空,无可用的训练数据集。 数据集未发布。 请提前创建与大模型对应的训练数据集,并完成数据集发布操作。 训练日志提示“root: XXX valid number
预测大模型训练常见报错与解决方案 常见报错 问题现象 原因分析 解决方案 创建训练任务时,数据集列表为空。 创建训练任务时,数据集选择框中显示为空,无可用的训练数据集。 数据集未发布。 请提前创建与大模型对应的训练数据集,并完成数据集发布操作。 训练日志提示“root: XXX valid number
科学计算大模型训练常见报错与解决方案 常见报错 问题现象 原因分析 解决方案 创建训练任务时,数据集列表为空 创建训练任务时,数据集选择框中显示为空,无可用的训练数据集。 数据集未发布。 请提前创建与大模型对应的训练数据集,并完成数据集发布操作。 训练日志提示“root: XXX valid number
功能类型 使用限制 数据工程-数据格式要求 ModelArts Studio平台支持接入的数据需要满足格式要求,包括文件格式、单个文件大小、所有文本大小以及文件数量等,请参考《用户指南》“使用数据工程构建数据集 > 数据集格式要求”。 模型开发-训练、评测最小数据量要求 使用ModelArts
表10 流式输出的数据单元 参数 参数类型 描述 data String stream=true时,模型生成的消息以流式形式返回。生成的内容以增量的方式逐步发送回来,每个data字段均包含一部分生成的内容,直到所有data返回,响应结束。 表11 流式输出的数据单元 参数 参数类型
预付费,按照订单的购买周期结算 1个月~1年 数据服务 数据智算服务 按需计费 智算单元 后付费,根据服务实际消耗量计费 按实际任务时长,时长精确到秒。 数据通算服务 按需计费 通算单元 后付费,根据服务实际消耗量计费 按实际任务时长,时长精确到秒。 数据托管服务 包周期计费 托管单元 预付费,按照订单的购买周期结算
开发盘古CV大模型 使用数据工程构建CV大模型数据集 训练CV大模型 部署CV大模型
日期列的列名。例如,["date"]表示csv数据中date列为日期列,默认设置为[],表示没有日期列,选择全部数据做训练。 标识列 在时间序列中可以定义粒度的id相关的列。 历史窗口大小 指模型在训练时基于多少个历史数据点作为输入。取值范围为[2, 200],默认值为7,表示使用7个历史数据点作为输入进行训练。
开发盘古科学计算大模型 使用数据工程构建科学计算大模型数据集 训练科学计算大模型 部署科学计算大模型 调用科学计算大模型
开发盘古预测大模型 使用数据工程构建预测大模型数据集 训练预测大模型 部署预测大模型
大模型使用类问题 盘古大模型是否可以自定义人设 如何将本地的数据上传至平台 导入数据过程中,为什么无法选中OBS的具体文件进行上传 如何查看预置模型的历史版本
开发盘古NLP大模型 使用数据工程构建NLP大模型数据集 训练NLP大模型 压缩NLP大模型 部署NLP大模型 评测NLP大模型 调用NLP大模型
”。在候选列表中,勾选需要进行横向比对的提示词,并单击“创建评估”。 图1 创建评估 选择评估使用的变量数据集和评估方法。 评估用例集:根据选择的数据集,将待评估的提示词和数据集中的变量自动组装成完整的提示词,输入模型生成结果。 评估方法:根据选择的评估方法,对模型生成结果和预期
模型规格:不同规格的模型支持的长度不同,若目标任务本身需要生成的长度已经超过模型上限,建议您替换可支持更长长度的模型。 数据质量:请检查训练数据中是否存在包含异常截断的数据,可以通过规则进行清洗。 父主题: 大模型微调训练类问题
NLP大模型自动评测指标说明-使用评测模板 评测指标(自动评测-使用评测模板) 指标说明 评测得分 每个数据集上的得分为模型在当前数据集上的通过率;评测能力项中若有多个数据集则按照数据量的大小计算通过率的加权平均数。 综合能力 综合能力是计算所有数据集通过率的加权平均数。 表3 NLP大模型人工评测指标说明 评测指标(人工评测)