内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 深度学习之虚拟对抗样本

    对抗样本也提供了一种实现半监督学习的方法。在与数据集中的标签不相关联的点 x 处,模型本身为其分配一些标签 yˆ。模型的标记 yˆ 未必是真正的标签,但如果模型是高品质的,那么 yˆ 提供正确标签的可能性很大。我们可以搜索一个对抗样本 x′,导致分类器输出一个标签 y′ 且 y′

    作者: 小强鼓掌
    730
    3
  • 机器学习(五):机器学习算法分类

    输入数据没有被标记,也没有确定的结果。样本数据类别未知; 需要根据样本间的相似性对样本集进行类别划分。 有监督,无监督算法对比: ​ 三、半监督学习 定义:训练集同时包含有标记样本数据和未标记样本数据。 监督学习训练方式: 半监督学习训练方式: 四、强化学习 定义:实质是make

    作者: Lansonli
    发表时间: 2023-02-18 05:59:28
    71
    0
  • 【玩转标准版MLS系列四】机器学习助力客户分群

    1  目的使用机器学习的一键式客户分群模板,快速区分大中小客户,定制适宜的销售策略和客户管理方针。147322  场景描述在商品交易活动中,商品批发商会依据每个客户的年进货量大小,人工逐个判断为大客户还是小客户,再以此来确定第二年的销售策略和客户管理方针。随着买卖双方交易的时间变

    作者: 人工智能
    18538
    1
  • 7天玩转机器学习

    MLS,帮助企业通过机器学习技术,快速洞察数据规律和构建预测模型,并将其部署为预测分析解决方案。华为云机器学习服务主要具备以下几个特性:第一,云上全托管,部署在云上的机器学习,按需申请一键开通,无需购买软件包和硬件资源相比,企业自建机器学习平台搭建周期由周期缩短至分钟级,为企业

    作者: Amber
    发表时间: 2019-02-28 18:06:48
    4254
    0
  • 机器学习基础】常用机器学习模型

    类别上样本的特性。该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。 kNN方法在类别决策时,只与极少量的相邻样本有关。由于kNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说

    作者: Micker
    发表时间: 2020-06-30 22:16:48
    10138
    0
  • 机器学习(二十五):机器学习可视化利器-Yellowbrick

    声明:未经允许不得转载,CSDN:川川菜鸟。本篇全文以鸢尾花数据集为例进行讲解和实现。

    作者: 川川菜鸟
    发表时间: 2022-08-19 16:22:01
    145
    0
  • Google Earth Engine(GEE)——机器学习(监督分类1)样本数据为点要素

    监督分类 该Classifier包通过在 Earth Engine 中运行的传统 ML 算法处理监督分类。这些分类器包括 CART、RandomForest、NaiveBayes 和 SVM。分类的一般工作流程是:

    作者: 此星光明
    发表时间: 2022-04-15 16:25:59
    981
    0
  • 【云知易】机器学习服务 入门 03 快速上手工作流

    很多决策树组成,每一棵决策树之间没有关联。得到森林之后,当有一个新的样本输入时,就让森林中的每一棵决策树分别进行判断,看这个样本对应哪一类(分类)或哪一个值(回归)。对于分类问题,哪一类被选择最多,就预测这个样本为那一类;对于回归问题,取所有树的预测值的平均值。 通过数据观察,发

    作者: 阅识风云
    发表时间: 2017-11-09 15:17:15
    5416
    0
  • 机器学习(四):机器学习工作流程

    机器学习工作流程 一、什么是机器学习 机器学习是从数据中自动分析获得模型,并利用模型对未知数据进行预测。 ​ 二、机器学习工作流程 机器学习工作流程总结: 1.获取数据 2.数据基本处理 3.特征工程 4.机器学习(模型训练) 5.模型评估 - 结果达到要求,上线服务

    作者: Lansonli
    发表时间: 2023-02-13 14:01:09
    109
    0
  • 机器学习基础图表-机器学习的类型

    机器学习主要有三种基本类型:监督学习、非监督学习和强化学习。1监督学习监督学习是使用已知正确答案的示例来训练模型。已知数据和其一一对应的标签,训练一个智能算法,将输入数据映射到标签的过程,它的常见应用场景如分类问题和回归问题。常见的算法有K近邻算法、线性回归、逻辑回归、支持向量机

    作者: @Wu
    1477
    3
  • 机器学习笔记(九)---- 集成学习(ensemble learning)

    “异质”,如果个体学习器中只包含一种学习算法,例如都是决策树,或都是神经网络,这样的集成就是同质集成,如果个体学习器中包含了多种学习算法,则称为异质集成。 集成学习的目的是得到一个比单一学习器预测性能更好的集成学习器,这就要求个体学习器“好而不同”,要求个体学习器有一定的准确性,同时又有一定的差异性。

    作者: 云上有未来
    发表时间: 2019-09-19 16:56:49
    8262
    0
  • 【MindSpore易点通】机器学习系列:大规模机器学习

    整个训练集来算出整个样本集的代价函数,而是只需要每次对最后1000个,或者多少个样本求下平均值。应用这种方法,既可以保证随机梯度下降法在正常运转和收敛,也可以用它来调整学习速率的大小。5 在线学习现在有一种新的大规模的机器学习机制,叫做在线学习机制。在线学习机制让我们可以模型化问

    作者: Skytier
    874
    1
  • kaggle机器学习 入门

    来源 kaggle Machine Learning Micro-Course Home Page import pandas as pd melbourne_file_path = 'melb_data.csv/melb_data.csv' melbourne_data

    作者: 毛利
    发表时间: 2021-07-14 22:52:53
    902
    0
  • 机器学习算法

    什么是机器学习? 什么是机器学习算法? 机器学习算法有哪些类型?  什么是监督学习算法? 什么是无监督学习算法? 什么是强化学习算法? 机器学习算法列表  机器学习算法:什么是机器学习机器学习 是一个概念,它允许机器从示例和经验中学习,而且无需明确编程。

    作者: Donglian Lin
    发表时间: 2021-12-27 09:35:05
    2064
    0
  • 机器学习算法选择

    使得在某度量方式下,数据中同类样本之间的距离尽可能减小,而不同类别样本之间的距离尽可能增大,常用的度量学习方法分为全局度量学习和局部度量学习,深度学习也可以与度量学习相结合,利用深度神经网络自适应学习特征表达,当数据量较多时,推荐使用深度度量学习深度度量学习已经成功用于人脸识别等领域

    作者: 运气男孩
    957
    5
  • [机器学习Lesson 1] 机器学习简介

    Learning (监督学习)它被称作监督学习是因为对于每个数据来说 我们给出了 “正确的答案”。你有一些问题和他们的答案,你要做的有监督学习就是学习这些已经知道答案的问题。然后你就具备了经验了,这就是学习的成果。然后在你接受到一个新的不知道答案的问题的时候,你可以根据学习得到的经验,得出

    作者: mantou
    发表时间: 2018-11-12 15:46:36
    9282
    0
  • 《Spark机器学习进阶实战》——1.3 机器学习分类

    3 机器学习分类机器学习无疑是当前数据分析领域的一个热点内容。很多人在平时工作中都或多或少会用到机器学习算法。机器学习按照学习形式进行分类,可分为监督学习、无监督学习、半监督学习、强化学习等。区别在于,监督学习需要提供标注的样本集,无监督学习不需要提供标注的样本集,半监督学习需要

    作者: 华章计算机
    发表时间: 2019-05-30 23:53:21
    3690
    1
  • 使用MLS预置算链进行机器学习建模

    这里简单介绍如何通过一键运行预置的餐厅经营销售量预测算链,完成建模,帮助开发者快速了解MLS的建模过程。 前提条件 已经创建一个基于MLStudio的Notebook镜像,并进入MLS Editor可视化编辑界面。 #### Step1 运行预置算链 1. 单击资产浏览图标 ![image

    作者: 运气男孩
    3156
    3
  • 《Spark机器学习进阶实战》——1.2.3 其他机器学习

    2.3 其他机器学习此外,机器学习的常见算法还包括迁移学习、主动学习和演化学习等。(1)迁移学习迁移学习是指当在某些领域无法取得足够多的数据进行模型训练时,利用另一领域的数据获得的关系进行学习。迁移学习可以把已训练好的模型参数迁移到新的模型,指导新模型训练,更有效地学习底层规则、减

    作者: 华章计算机
    发表时间: 2019-05-30 23:49:12
    5370
    0
  • 机器学习案例(十):新闻分类

    目前,新闻文章是由新闻网站的内容管理者手工分类的。但为了节省时间,他们还可以在自己的网站上使用机器学习模型,读取新闻标题或新闻内容,并对新闻类别进行分类。在下面的部分中,我将带你了解如何使用 Python 编程语言为新闻分类任务训练机器学习模型。 文章目录 一、数据集

    作者: 川川菜鸟
    发表时间: 2022-09-24 16:38:38
    198
    0