检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
1 目的使用机器学习的一键式预测性维护模板,预测设备剩余使用寿命,提前采取维护措施,消除安全隐患。147292 场景描述轴承是飞机发动机动力的来源,其可靠性和长寿命对飞机发动机至关重要。轴承由于长时间运行或者某些异常因素会容易发生故障,会直接影响飞机发动机和飞机正常运行。如果维修
aBoost是监督学习中最强大的两种算法之一(另一个是支持向量机SVM)。AdaBoost的训练过程如下:为每个训练样本初始化相同的权重;针对训练样本及权重,找到一个弱分类器;计算出这个弱分类器的错误率ε与权重α;对正确分类的样本,降低其权重,对错误分类的样本,提升其权重;返回2
有多种因素可能导致过拟合,其中最常见的情况是由千学习能力过千强大,以至千把训练样本所包含的不太一般的特性都学到了,而欠拟合则通常是由千学习能力低下而造成的.欠拟合比较容易克服,例如在决策树学习中扩展分 支、 在神经网络学习中增加训练轮数等,而过拟合则很麻烦.在后面的学习中我们将看到,过拟合是机器学习面临的关键障碍
据量大在存储、计算和通信方面都对现有机 器学习系统造成挑战。我们研究组近年来从 哈希学习和分布式随机学习两个方向探索大 数据机器学习技术,来解决相应的挑战。 1 哈希学习 哈希学习最初是用于大数据中的最近 邻检索任务,近年来被推广到其他多种机 器学习任务。在最近邻检索任务中,给定 一个查询样本,系统需要从数据库中检索
收敛,而且可以学习到一些基础特征。另外一种方法课程学习 (curriculum learning)也称作warm-start methods,核心思想是模仿人类学习的特点,先学简单,再学较难的,会更有利于学习。所以在机器学习中,先学习简单的样本,再学习较困难的样本,能够提高模型的
机从D中挑选一个 样本,将其拷贝放入D' ,然后再将该样本放回初始数据集D中,使得该样本在 下次采样时仍有可能被采到;这个过程重复执行m次后,我们就得到了包含m 个样本的数据集D',这就是自助采样的结果.显然,D中有一部分样本会在D' 中多次出现,而另一部分样本不出现. 可以做一
每次添加一个树,其实是学习一个新函数f(x),去拟合上次预测的残2.当我们训陈练完成得到棵树,我们要预湨一个样本的分数,其实就是根据这个样本的特征,在每棵树中会落到对应的一个叶子节点,每个叶子节点就对应一个分数3.最后只需要将每棵树对应的分数加起来就是该样本的预湨值。需要带入的包from
多维缩放中最关键的是要求低维空间中的样本距离尽可能与原始空间中样本距离保持一致。 假设给定N个样本,表示原始空间中的距离矩阵,其中第i行第j列的元素dij表示第i个实例和第j个实例之间的距离,目标是获得d’维空间中样本表示,且任意两个样本在d’维空间中的距离等于在原始空间中的距离,即--
## 1 集成算法概述 集成学习(ensemble learning)是时下非常流行的机器学习算法,它本身不是一个单独的机器学习算法,而是通过在数据上构建多个模型,集成所有模型的建模结果。基本上所有的机器学习领域都可以看到集成学习的身影,在现实中集成学习也有相当大的作用,它可以用来
练出模型后,用T来评估其测试误差,作为对泛化误差的估计.以二分类任务为例,假定D包含1000个样本,将其划分为S包含700个样 本,T包含300个样本, 用S 进行训练后,如果模型在T上有90个样本分类错 误那么其错误率为(90/300)X 100% = 30%,相应的,精度为1-30%
通常,我们可通过实验测试来对学习器的泛化误差进行评估并进而做出选择为此,需使用一个 “测试集” (testing set)来测试学习器对新样本的判别能力,然后以测试栠上的 " 测试误差” (testing error)作为泛化误差的近似. 通常我们假设测试样本也是从样本真实分布中独立同分布采样曲得.
yy^来代表我们在训练好的模型上通过输入获得相应的预测值。 由于训练集中有多个样本,所以我们一般用(xi,yi)(x^{i},y^{i})(xi,yi)来表示第i个样本的特征和第i个样本对应的输出。 在这一讲下面的学习中,我们会用到最简单的模型来开始我们的机器学习之路,即线性回归模型。 2.2 代价函数 在这
某度量方式下,数据中同类样本之间的距离尽可能减小,而不同类别样本之间的距离尽可能增大。常用的度量学习方法分为全局度量学习和局部度量学习。深度学习也可以与度量学习相结合,利用深度神经网络自适应学习特征表达,当数据量较多时,推荐使用深度度量学习。深度度量学习己经成功用于人脸识别等领域。
析与挖掘。 数据分析与挖掘技术是机器学习算法和数据存取技术的结合,利用机器学习提供的统计分析、知识发现等手段分析海量数据,同时利用数据存取机制实现数据的高效读写。机器学习在数据分析与挖掘领域中拥有无可取代的地位,2012年Hadoop进军机器学习领域就是一个很好的例子。 模式识别
不是绝对),数据越多,最后机器学习生成的模型预测的效果越好。通过我拟合直线的过程,我们可以对机器学习过程做一个完整的回顾。首先,我们需要在计算机中存储历史的数据。接着,我们将这些 数据通过机器学习算法进行处理,这个过程在机器学习中叫做“训练”,处理的结果可以被我们用来对新的数据进
出模式指引业务的改善。大部分数据挖掘中的算法是机器学习的算法在数据库中的优化。 统计学习 统计学习近似等于机器学习。统计学习是个与机器学习高度重叠的学科。因为机器学习中的大多数方法来自统计学,甚至可以认为,统计学的发展促进机器学习的繁荣昌盛。例如著名的支持向量机算法,就是源自统
分析与挖掘。数据分析与挖掘技术是机器学习算法和数据存取技术的结合,利用机器学习提供的统计分析、知识发现等手段分析海量数据,同时利用数据存取机制实现数据的高效读写。机器学习在数据分析与挖掘领域中拥有无可取代的地位,2012年Hadoop进军机器学习领域就是一个很好的例子。模式识别模
有九个要研究机器学习,中间还一些弄不清深度学习和机器学习的关系,实际上是想搞深度学习。原本深度学习(深度神经网络)只是机器学习领域一个分支,但因为其最近大火,导致对整个领域出现了这样的划分:深度的和非深度,或者说深度的和传统的。虽然现在自然语言处理研究主要用深度学习,但因为很多概
了用于建立模型的标签数据,以便学习如何从输入中预测输出。 无监督学习:是一种只利用输入X变量的机器学习任务。X变量是未标记的数据,学习算法在建模时使用的是数据的固有结构。 强化学习:是一种决定下一步行动方案的机器学习任务,它通过试错学习(trial and error