检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
├── requirements.txt # 第三方依赖 目前性能测试已经支持投机推理能力。 静态benchmark验证 本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在Step4 制作推理镜像步骤中已经上传过AscendCloud-LLM-x
署模型为在线服务中的“支持APP认证”参数)。对于已部署的在线服务,ModelArts支持修改其配置开启AppCode认证。 本文主要介绍如何修改一个已有的在线服务,使其支持AppCode认证并进行在线预测。 前提条件 提前部署在线服务,具体操作可以参考案例:使用ModelArts
注意:推理应用开发时,需要使用模型的Resize功能,改变输入的shape。而且Resize操作需要在数据从host端复制到device端之前执行,下面是一个简单的示例,展示如何在推理应用时使用动态Shape。 import mindspore_lite as mslite import numpy as np from
TF-1.13.1-python3.6 TF-2.1.0-python3.6 PyTorch-1.4.0-python3.6 下文将介绍如何在训练中使用评估代码。对训练代码做一定的适配和修正,分为三个方面:添加输出目录、复制数据集到本地、映射数据集路径到OBS。 添加输出目录
执行静态,动态性能评测脚本、 ├── requirements.txt # 第三方依赖 静态benchmark验证 本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在Step5 进入容器安装推理依赖软件步骤中已经上传
├── requirements.txt # 第三方依赖 目前性能测试还不支持投机推理能力。 静态benchmark验证 本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在Step5 进入容器安装推理依赖软件步骤中已经上传过AscendCloud-LLM-x
准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 微调训练 指令监督微调训练 介绍如何进行SFT全参微调/lora微调、训练任务、性能查看。 父主题: 主流开源大模型基于DevServer适配LlamaFactory PyTorch
在Notebook调试环境中部署推理服务 介绍如何在Notebook中配置NPU环境,部署并启动推理服务,完成精度测试和性能测试。 若需要部署量化模型,需在Notebook中进行模型权重转换后再部署推理服务。 在推理生产环境中部署推理服务 介绍如何创建AI应用,部署模型并启动推理服务,在线预测服务。
├── requirements.txt # 第三方依赖 目前性能测试已经支持投机推理能力。 静态benchmark验证 本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在步骤四 制作推理镜像步骤中已经上传过AscendCloud-LLM-x
务器的缓存目录下。 gallery-cli download {repo_id} {文件名} {文件名} 其中,“repo_id”如何获取,文件名如何获取。 如下所示,表示下载文件“config.json”和“merges.txt”到服务器的缓存目录“/test”下,当回显“100%”时表示下载完成。
式。本次迁移使用的是静态shape方式进行模型转换。 获取模型shape 由于在后续模型转换时需要知道待转换模型的shape信息,此处指导如何通过训练好的stable diffusion pytorch模型获取模型shape,主要有如下两种方式获取: 方式一:通过stable d
true, "default": 0.001, "help": "学习率" }, { "name": "
在Notebook调试环境中部署推理服务 介绍如何在Notebook中配置NPU环境,部署并启动推理服务,完成精度测试和性能测试。 如果需要部署量化模型,需在Notebook中进行模型权重转换后再部署推理服务。 在推理生产环境中部署推理服务 介绍如何在创建AI应用,部署并启动推理服务,在线预测在线服务。
远程使用Notebook实例、通过VS Code远程使用Notebook实例、通过SSH工具远程使用Notebook。 在AI开发过程中,如何将文件方便快速地上传到Notebook几乎是每个开发者都会遇到的问题。ModelArts提供了多种文件上传方式,在文件上传过程中,可以查看上传进度和速度。
├── requirements.txt # 第三方依赖 目前性能测试还不支持投机推理能力。 静态benchmark验证 本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在Step4 制作推理镜像步骤中已经上传过AscendCloud-LLM-x
modelarts:workspace:getQuota 查询工作空间配额。如果开通了工作空间功能,则需要配置此权限。 modelarts:tag:list 在训练作业中使用标签管理服务TMS。 IAM iam:credentials:listCredentials iam:agencies:listAgencies
elArts-HuaweiCloud,用户通过简易的操作,实现在本地IDE中进行训练配置、资源监控、作业管理、代码管理等动作。 本章节介绍如何使用VS Code插件创建训练作业并调试。 使用VS Code插件创建训练作业并调试功能目前是白名单,需要提交工单申请开通。 准备工作 创
如果在使用Notebook时,需要访问其他账号的OBS桶,请查看您的账号是否有该OBS桶的访问权限。如没有权限,请参见在Notebook中,如何访问其他账号的OBS桶?。 检查委托授权 请前往权限管理,查看是否具有OBS访问授权。如果没有,请参考配置访问授权(全局配置)。 检查OBS桶是否为非加密桶
者账户信息,按照提示输入即可。这里推荐使用Personal Access Token授权方式,如果出现密码失效报错请参考git插件密码失效如何解决? 图10 提交代码至GitHub仓库 完成上述操作后,可以在JupyterLab的git插件页面的History页签,看到“orig
在Notebook调试环境中部署推理服务 介绍如何在Notebook中配置NPU环境,部署并启动推理服务,完成精度测试和性能测试。 如果需要部署量化模型,需在Notebook中进行模型权重转换后再部署推理服务。 在推理生产环境中部署推理服务 介绍如何在创建AI应用,部署并启动推理服务,在线预测在线服务。