检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在新版本的应用开发页面,您可以基于上一版本的工作流配置,更新工作流开发的各个步骤,重新部署服务。 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。
确标签和预测标签,您可以对比正确标签和预测标签,判断当前模型预测该样本是否预测正确。 例如搜索框内输入标签“1”,下方会显示正确标签为“1”的样本中,预测正确的样本数在验证集中的占比。右侧显示正确标签为“1”的样本信息,包括样本的正确标签和预测标签。 图10 详细评估 单击右下角的“发布部署”。
针对已标注数据,云状识别工作流仅支持一张图片识别单个标签,支持如下两种数据格式。 相同标签的图片放在一个目录里,并且目录名字即为标签名。当存在多层目录时,则以最后一层目录为标签名。 示例如下所示,其中“cumulus”和“stratus”分别为标签名。 dataset-import-example
针对已标注数据,刹车盘识别工作流仅支持一张图片识别单个标签,支持如下两种数据格式。 相同标签的图片放在一个目录里,并且目录名字即为标签名。当存在多层目录时,则以最后一层目录为标签名。 示例如下所示,其中“ventilation”和“physical”分别为标签名。 dataset-import-example
准备数据 在使用无监督车牌检测工作流开发应用之前,您需要提前准备用于模型训练的数据,上传至OBS服务中。 设计车牌标签 首先需要考虑好车牌的标签类型,即希望识别出图片中车牌的一种结果。例如“plate”。 数据集要求 文件名规范,不能有中文,不能有+、空格、制表符。 保证图片质量
eg、bmp、png。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖所有标签的图片,且数据集中每个标签要有大于5个样本。 针对未标注数据,要求将图片放在一个目录里,示例如下所示。 ├─dataset-import-example
在使用第二相面积含量测定工作流开发应用之前,您需要提前准备用于模型训练的数据,上传至OBS服务中。 数据标签 标注基于ModelArts的图像分割标注基础能力,由于第二相边界多为不规则形状,目前采用多边形标注第二相,标签为“second_phase”。 数据集要求 文件名规范,不能有中文,不能有+、空格、制表符。
以换行符作为分隔符,每行数据代表一个样本数据,单个样本不能有分行显示,不支持换行。 基于已设计好的实体标签准备文本数据。每个实体标签需要准备20个及以上数据,为了训练出效果较好的模型,建议每个实体标签准备100个以上的数据。 本工作流只支持上传未标注数据,将待标注的内容放在一个文本文件内。 上传数据至OBS
为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖所有标签的图片。 基于已设计好的热轧钢板表面缺陷标签准备图片数据。每个分类标签需要准备20个数据以上,为了训练出效果较好的模型,建议每个分类标签准备200个以上的数据。 针对未标注数据,要求将图片放在一个目录里,示例如下所示。
为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖所有标签的图片。 基于已设计好的商品标签准备图片数据。每个商品标签需要准备20个数据以上,为了训练出效果较好的模型,建议每个商品标签准备200个以上的数据。 针对未标注数据,要求将图片放在一个目录里,示例如下所示。
为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖所有商品分类的图片,即覆盖所有标签的图片。 每个分类标签需要准备20个数据以上,为了训练出效果较好的模型,建议每个分类标签准备200个以上的数据。 所有图片放在一个文件目录下,示例如下所示。 ├─Training-Dataset
针对所选择的训练数据集,如果每个标签的样本数量太少,可以选择合并标签。 打开合并标签开关,在下方填入需要合并的标签样本数量“上限值”,以及合并标签后新的“标签名”。 图5 合并标签 查看标签解析 新建并选择训练数据集后,针对已标注的数据,您可以在“标签解析”中查看标签样本的统计数据,横轴为“标签”,纵轴为标签对应的有效“样本数”。
“详细评估”左侧在搜索框中搜索标签,右侧显示正确标签所对应样本的正确标签和预测标签,您可以对比正确标签和预测标签,判断当前模型对该样本的预测是否正确。 例如搜索框内输入标签“1”,下方会显示正确标签为“1”的样本中,预测正确的样本数在验证集中的占比。右侧显示正确标签为“1”的样本信息,包括样本的正确标签和预测标签。
如何访问ModelArts Pro 云服务平台提供了提供了管理控制台的管理方式。 ModelArts Pro提供了简洁易用的管理控制台,包括自然语言处理、视觉AI、文字识别、语音识别等应用开发功能,您可以在管理控制台端到端完成您的AI应用开发。 使用ModelArts Pro管理
ModelArts Pro如何收费? 目前ModelArts Pro开放了文字识别套件、自然语言处理套件、视觉套件和HiLens套件,其中,文字识别套件、自然语言处理套件和视觉套件已商用,HiLens条件处于公测阶段。各个套件的计费项和计费模式如下: 文字识别套件 自然语言处理套件
如何使用ModelArts Pro 使用流程 注册华为帐号并开通华为云 申请行业套件 配置访问授权
“详细评估”左侧在搜索框中搜索标签,右侧显示正确标签所对应样本的正确标签和预测标签,您可以对比正确标签和预测标签,判断当前模型对该样本的预测是否正确。 例如搜索框内输入标签“1”,下方会显示正确标签为“1”的样本中,预测正确的样本数在验证集中的占比。右侧显示正确标签为“1”的样本信息,包括样本的正确标签和预测标签。
然后单击“确定”。 添加标签集 当上传的数据集状态为“未标注数据集”,需要添加标签名称。 单击文本框下方的添加标签。 鼠标移至文本框,单击文本框右侧的删除标签。 新建训练数据集后,勾选当前应用开发所需的训练数据集。 标注数据 由于模型训练过程需要有标签的数据,针对已上传的数据集
针对所选择的训练数据集,如果每个标签的样本数量太少,可以选择合并标签。 打开合并标签开关,在下方填入需要合并的标签样本数量“上限值”,以及合并标签后新的“标签名”。 图3 合并标签 查看标签解析 新建并选择训练数据集后,针对已标注的数据,您可以在“标签解析”中查看标签样本的统计数据,横轴为“标签”,纵轴为标签对应的有效“样本数”。
入位置”的子目录。“数据集输出位置”建议选择一个空目录。 添加标签集 添加标签名称,选择标签颜色。 在文本框中输入标签名称,在右侧单击选择标签颜色。 单击文本框下方的添加标签。 鼠标移至文本框,单击文本框右侧的删除标签。 新建数据集后,单击数据集操作列的“标注”,进入数据集概览页