检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
找到已联网的机器(本章节以Linux系统机器为例)提前下载资源,以实现离线安装。用户可遵循以下步骤: 步骤一:资源下载 Python依赖包下载:进入 scripts/install.sh 文件中,找到需要安装的pip文件,如下列所示。直接下载pip文件,注意:下载要求的版本。 pip
自动学习”,进入自动学习总览页面。 在自动学习列表上方的搜索框中,根据您需要的属性类型,例如,名称、状态、项目类型、当前节点、标签等,过滤出相应的工作流。 单击搜索框右侧的按钮,可选择自动学习的基础设置,需要的显示列。 表格内容折行:默认为关闭状态,启用此能力可让表格内容自动折行,禁用此功能可截断文本。
在数据标注页面,单击右侧的“标签管理”,在标签管理页,显示全部标签的信息。 修改标签:单击操作列的“修改”按钮,在弹出的对话框中输入修改后的标签名、选择修改后的快捷键,然后单击“确定”完成修改。修改后,之前添加了此标签的音频,都将被标注为新的标签名称。 删除标签:单击操作列的“删除”按钮,
“自定义”的模式,可在右侧输入框中输入1~24范围内的任意整数。 如果您购买了套餐包,计算节点规格可选择您的套餐包,同时在“配置费用”页签还可查看您的套餐包余量以及超出部分的计费方式,请您务必关注,避免造成不必要的资源浪费。 完成资源配置后,单击“继续运行”,在弹框中确认继续运行
自动学习”,进入自动学习总览页面。 在自动学习列表上方的搜索框中,根据您需要的属性类型,例如,名称、状态、项目类型、当前节点、标签等,过滤出相应的工作流。 单击搜索框右侧的按钮,可选择自动学习的基础设置,需要的显示列。 表格内容折行:默认为关闭状态,启用此能力可让表格内容自动折行,禁用此功能可截断文本。
自动学习”,进入自动学习总览页面。 在自动学习列表上方的搜索框中,根据您需要的属性类型,例如,名称、状态、项目类型、当前节点、标签等,过滤出相应的工作流。 单击搜索框右侧的按钮,可选择自动学习的基础设置,需要的显示列。 表格内容折行:默认为关闭状态,启用此能力可让表格内容自动折行,禁用此功能可截断文本。
修改已标注的数据 针对“已标注”的文本数据,仅支持删除此文本对象的标签。在“已标注”页签下,在标签名称区域单击标签右上角的叉号,即可删除此文本对象的标签。标签删除后,此文本对象将被呈现至“未标注”页签下。 图3 删除已标注文本的标签 修改标签 针对文本分类的自动学习项目,项目创
数据清洗:数据清洗是指对数据进行去噪、纠错或补全的过程。 数据清洗是在数据校验的基础上,对数据进行一致性检查,处理一些无效值。例如在深度学习领域,可以根据用户输入的正样本和负样本,对数据进行清洗,保留用户想要的类别,去除用户不想要的类别。 数据选择:数据选择一般是指从全量数据中选择数据子集的过程。 数据可以通
perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。
perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。
perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。
分别单击“输入”和“输出”的数据存储位置,如图所示,选择OBS桶中指定的目录。ORIGINAL_TRAIN_DATA_PATH中则直接选中数据集文件。 “输入”和“输出”中的获取方式全部选择为:环境变量。 “输出”中的预下载至本地目标选择:下载,此时输出路径中的数据则会下载至OBS中。 Step3
修改标签:在需要修改的标签的“操作”列,单击“修改”,输入修改后的标签,单击“确定”即可。 删除标签:选择对应的标签,单击操作列的“删除”,在弹出的“删除标签”对话框中单击“确定”即可删除对应的标签。 删除后无法再恢复,请谨慎操作。 继续运行 完成数据的确认之后,返回自动学习的页面,在数据
表1 预测结果中的参数说明 参数 说明 predicted_label 表示图片预测的标签。 scores 表示Top5标签的预测置信度。 由于“运行中”的在线服务将持续耗费资源,如果不需再使用此在线服务,建议在“在线服务”的操作列单击“更多>停止”,避免产生不必要的费用。如果需要继续使用此服务,可单击“启动”恢复。
台服务故障导致的,建议稍等片刻,然后重新创建训练作业。如果重试超过3次仍无法解决,请获取如下信息,并联系华为云技术支持协助解决故障。 获取模型ID。 进入“模型管理”页面,在模型管理页面找到自动学习任务中自动创建的模型,自动学习产生的模型都是以“exeML-”开头的。单击模型名称
自动学习”,进入自动学习总览页面。 在自动学习列表上方的搜索框中,根据您需要的属性类型,例如,名称、状态、项目类型、当前节点、标签等,过滤出相应的工作流。 单击搜索框右侧的按钮,可选择自动学习的基础设置,需要的显示列。 表格内容折行:默认为关闭状态,启用此能力可让表格内容自动折行,禁用此功能可截断文本。
分别单击“输入”和“输出”的数据存储位置,如图所示,选择OBS桶中指定的目录。ORIGINAL_TRAIN_DATA_PATH中则直接选中数据集文件。 “输入”和“输出”中的获取方式全部选择为:环境变量。 “输出”中的预下载至本地目标选择:下载,此时输出路径中的数据则会下载至OBS中。 Step3
分别单击“输入”和“输出”的数据存储位置,如图所示,选择OBS桶中指定的目录。ORIGINAL_TRAIN_DATA_PATH中则直接选中数据集文件。 “输入”和“输出”中的获取方式全部选择为:环境变量。 “输出”中的预下载至本地目标选择:下载,此时输出路径中的数据则会下载至OBS中。 Step3
择“开发空间 > 自动学习”,进入自动学习总览页面。 单击选择“图像分类”创建项目。完成参数填写。 名称:自定义您的项目名称。 描述:自定义描述您的项目详情,例如垃圾分类。 数据集:下拉选择已下载的数据集(步骤2中已成功导入的数据集,默认为下拉数据集列表中的第一个数据集)。 输出
存储费用:自动学习作业的数据通过对象存储服务(OBS)上传或导出,存储计费按照OBS的计费规则。 综上,运行自动学习作业的费用 = 计算资源费用(2.43 元) + 存储费用 示例:使用专属资源池运行自动学习作业。计费项:标准存储费用 假设用户于2023年4月1日创建了自动学习的图像分类