检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在“工业智能体控制台>工业AI开发>工业AI开发工作流
打开合并标签开关,在下方填入需要合并的标签样本数量“上限值”,以及合并标签后新的“标签名”。 图3 合并标签 查看标签解析 新建并选择训练数据集后,针对已标注的数据,您可以在“标签解析”中查看标签样本的统计数据,横轴为“标签”,纵轴为标签对应的有效“样本数”。 图4 标签解析 后续操作
针对所选择的训练数据集,如果每个标签的样本数量太少,可以选择合并标签。 打开合并标签开关,在下方填入需要合并的标签样本数量“上限值”,以及合并标签后新的“标签名”。 图5 合并标签 查看标签解析 新建并选择训练数据集后,针对已标注的数据,您可以在“标签解析”中查看标签样本的统计数据,横轴为“标签”,纵轴为标签对应的有效“样本数”。
保证图片质量:不能有损坏的图片;目前支持的格式包括JPG、JPEG、PNG、BMP,且单张图片大小不能超过5MB,且单次上传的图片总大小不能超过8MB。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖所有标签的图片。 基于已设计好的热轧钢板表面
单击“数据集输入位置”右侧输入框,在弹出的“数据集输入位置”对话框中,选择“OBS桶”和“文件夹”,然后单击“确定”。 数据集输出位置 待新建的数据集存储至OBS的位置。 待新建的数据集有一个默认存储位置。如果需要修改数据集存储位置,请单击“数据集输出位置”右侧的“修改”,在弹出的“数据集输出位置”对话框中,选择
以换行符作为分隔符,每行数据代表一个样本数据,单个样本不能有分行显示,不支持换行。 基于已设计好的实体标签准备文本数据。每个实体标签需要准备20个及以上数据,为了训练出效果较好的模型,建议每个实体标签准备100个以上的数据。 本工作流只支持上传未标注数据,将待标注的内容放在一个文本文件内。 上传数据至OBS
Pro 提供的原子组件(Atom)灵活编排新的行业工作流。基于AI 市场,用户还可以相互分享不同行业场景的行业AI 工作流。ModelArts Pro 以“授人以渔”的方式助力企业构建AI 能力,赋能不同行业的AI 应用开发者,让AI 变得触手可及。 与ModelArts的关系 ModelArts
NG、BMP。 不要把明显不同的多个任务数据放在同一个数据集内。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。 数据集样本数应大于100,用于测试的已标注数据应不少于20张,样本数达1万张以上性能更优。 为了
ModelArts Pro在数据集管理过程中,针对同一个数据源,对不同时间标注后的数据,按版本进行区分,方便后续模型构建和开发过程中,选择对应的数据集版本进行使用。数据标注完成后,您可以将数据集当前状态进行发布,生成一个新的数据集版本。 关于数据集版本 针对刚创建的数据集(未发布前),无数据集
在使用通用文本分类工作流开发应用之前,您需要提前准备用于模型训练的数据,上传至OBS服务中。 设计分类标签 首先需要确定好文本分类的标签,即希望识别出文本的一种结果。例如分类用户对商品的评论,则可以以“positive”、“neutral”、“negative”等作为用户对某商品评论的分类标签,可以设计为“posi
新建并选择训练数据集后,针对已标注的数据,在“标签解析”中查看标签样本的统计数据,横轴为“标签”,纵轴为标签对应的有效“样本数”。 图5 标签解析 后续操作 选择训练数据集后,单击右下角的“下一步”,进入应用开发的“模型训练”步骤,详细操作指引请参见训练模型。 父主题: 热轧钢板表面缺陷检测工作流
入数据集概览页单击右上角的“开始标注”,在“数据标注”页面手动标注数据。 勾选当前应用开发所需的训练数据集。 查看标签解析 新建并选择训练数据集后,针对已标注的数据,您可以在“标签解析”中查看标签样本的统计数据,横轴为“标签”,纵轴为标签对应的有效“样本数”。 后续操作 在“数据
由于模型训练过程需要有标签的数据,针对已上传的数据集,手动添加或修改标签。 单击数据集操作列的“标注”,进入数据集概览页单击右上角的“开始标注”,在“数据标注”页面手动标注数据。 查看标签解析 新建并选择训练数据集后,针对已标注的数据,在“标签解析”中查看标签样本的统计数据,横轴为“标签”,纵轴为标签对应的有效“样本数”。
以换行符作为分隔符,每行数据代表一个样本数据,单个样本不能有分行显示,不支持换行。 文本数据至少包含2个及以上的标签。每个分类标签需要准备5个及以上数据,为了训练出效果较好的模型,建议每个分类标签准备100个以上的数据。 多语种文本分类工作流仅支持对单语种的文本分类,当前支持文本分类的语种包括英语、法
由于模型训练过程需要有标签的数据,针对已上传的数据集,手动添加或修改标签。 单击数据集操作列的“标注”,进入数据集概览页单击右上角的“开始标注”,在“数据标注”页面手动标注数据。 查看标签解析 新建并选择训练数据集后,针对已标注的数据,在“标签解析”中查看标签样本的统计数据,横轴为“标签”,纵轴为标签对应的有效“样本数”。
待新建的数据集名称。 描述 数据集简要描述。 数据集输入位置 训练数据存储至OBS的位置。 单击“数据集输入位置”右侧输入框,在弹出的“数据集输入位置”对话框中,选择“OBS桶”和“文件夹”,然后单击“确定”。 数据集输出位置 待新建的数据集存储至OBS的位置。 待新建的数据集有
新建并选择训练数据集后,针对已标注的数据,在“标签解析”中查看标签样本的统计数据,横轴为“标签”,纵轴为标签对应的有效“样本数”。 图5 标签解析 后续操作 在“数据选择”页面选择训练数据集,针对未标注的数据进行数据标注,您可以手动标注数据,然后单击“下一步”,进入应用开发的“SKU创建”步骤,详细操作指引请参见创建SKU。
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法参数、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在自然语言处理套件控制台选择“通用实体抽取工作流
符。 保证图片质量:不能有损坏的图片;目前支持的格式包括JPG、JPEG、PNG、BMP。 不要把明显不同的多个任务数据放在同一个数据集内。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。 每一类数据尽量多,尽
符。 保证图片质量,不能有损坏的图片。目前支持的格式包括JPG、JPEG、PNG、BMP。 不要把明显不同的多个任务数据放在同一个数据集内。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。 每一类数据尽量多,尽