检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
training_job_id 是 String 训练作业ID。获取方法请参见查询训练作业列表。 task_id 是 String 训练作业的任务名称。可从训练作业详情中的status.tasks字段中获取。 请求参数 无 响应参数 状态码: 200 表2 响应Body参数 参数 参数类型 描述 name String
查询训练作业日志 功能介绍 按行来查询训练作业日志详细信息。 URI GET /v1/{project_id}/training-jobs/{job_id}/versions/{version_id}/aom-log 参数说明如表1所示。 表1 路径参数 参数 是否必选 参数类型
外网访问限制 日志提示“ Network is unreachable” 运行训练作业时提示URL连接超时 父主题: 训练作业
Arts平台提交训练作业,并持续的获取训练日志直到训练结束。 查看训练过程 ModelArts Training Log 中会展示训练过程中的日志,同时日志也会保存在工程目录下的MA_LOG文件夹。如下图所示,左边是训练任务的状态,右边是云端训练日志的输出,本案例的训练任务需6分钟左右完成。
Neural Networks)是华为公司针对AI场景推出的异构计算架构,通过提供多层次的编程接口,支持用户快速构建基于昇腾平台的AI应用和业务。包括: AscendCL:昇腾硬件的统一编程接口,包含了编程模型、硬件资源抽象、AI任务及内核管理、内存管理、模型和算子调用、媒体预
训练作业性能降低 问题现象 使用ModelArts平台训练算法训练耗时增加。 原因分析 可能存在如下原因: 平台上的代码经过修改优化、训练参数有过变更。 训练的GPU硬件工作出现异常。 处理方法 请您对作业代码进行排查分析,确认是否对训练代码和参数进行过修改。 检查资源分配情况(
LoRA训练 本章节介绍SDXL&SD 1.5模型的LoRA训练过程。LoRA训练是指在已经训练好的模型基础上,使用新的数据集进行LoRA微调以优化模型性能的过程。 启动SD1.5 LoRA训练服务 使用ma-user用户执行如下命令运行训练脚本。 sh diffusers_lora_train
删除训练作业版本 功能介绍 删除训练作业一个版本。 此接口为异步接口,作业状态请通过查询训练作业列表和查询训练作业版本详情接口获取。 URI DELETE /v1/{project_id}/training-jobs/{job_id}/versions/{version_id} 参数说明如表1所示。
Finetune训练 本章节介绍SDXL&SD 1.5模型的Finetune训练过程。Finetune是指在已经训练好的模型基础上,使用新的数据集进行微调(fine-tuning)以优化模型性能。 训练前需要修改数据集路径、模型路径。数据集路径格式为/datasets/pokemon-dataset/image_0
启动SD1.5训练服务 使用ma-user用户执行如下命令运行训练脚本。 cd /home/ma-user/diffusers sh diffusers_controlnet_train.sh Step3 启动sdxl训练服务 使用ma-user用户执行如下命令运行训练脚本。 cd
训练作业 OBS操作相关故障 云上迁移适配故障 硬盘限制故障 外网访问限制 权限问题 GPU相关问题 业务代码问题 预置算法运行故障 训练作业运行失败 专属资源池创建训练作业 训练作业性能问题 Ascend相关问题
LoRA训练 本章节介绍SDXL&SD 1.5模型的LoRA训练过程。LoRA训练是指在已经训练好的模型基础上,使用新的数据集进行LoRA微调以优化模型性能的过程。 训练前需要修改数据集路径、模型路径。脚本里写到datasets路径即可。 run_lora_sdxl中的vae路径要准确写到sdxl_vae
Step4 开启训练故障自动重启功能 创建训练作业时,可开启自动重启功能。当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断点续训练是通过checkpoi
训练作业性能问题 训练作业性能降低 父主题: 训练作业
Session初始化,与使用SDK调测单机训练作业中的1相同。 准备训练数据,与使用SDK调测单机训练作业中的2相同,唯一的不同在于obs_path参数是必选的。 准备训练脚本。 from modelarts.train_params import TrainingFiles code_dir
更新训练作业描述 功能介绍 更新训练作业的描述。 URI PUT /v1/{project_id}/training-jobs/{job_id} 参数说明如表1所示。 表1 参数说明 参数 是否必选 参数类型 说明 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。
预训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的llm_train/AscendSpeed代码目录。
查看训练作业详情 登录ModelArts管理控制台。 在左侧导航栏中,选择“模型训练 > 训练作业”,进入“训练作业”列表。 在作业列表,单击“导出”,可以将训练作业根据时间周期导出Excel表到本地。最多只支持导出前200行数据。 在“训练作业”列表中,单击作业名称,进入训练作业详情页。
训练作业失败,如何使用开发环境调试训练代码? 在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。 配置本地IDE(Pycharm或者VsCode)联接云上环境调试请参考使用本地IDE开发模型。
job_name:可选参数,训练任务名,便于区分和记忆。 本地单机调试训练任务开始后,SDK会依次帮助用户完成以下流程: 初始化训练作业,如果2指定的训练数据在OBS上,这里会将数据下载到local_path中。 执行训练任务,用户的训练代码需要将训练输出保存在4中指定的local_path中。