检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
3567:用户只能访问自己账号下的obs目录,ModelArts在读取其他用户obs下的数据时,需要用户委托权限,没有创建委托,就没有权限使用其他用户obs中的数据。 登录ModelArts控制台,管理控制台,在左侧导航栏中选择“权限管理”,单击“查看权限”,检查是否配置了obs的委托权限。 图1
提示完成对应的测试。 调用API 待推理服务的状态变为“运行中”时,可单击操作列的“调用”,复制对应的接口代码,在本地环境或云端的开发环境中进行接口。 图1 调用接口 当部署推理服务的“安全认证”选择了“AppCode认证”,则需要将复制的接口代码中headers中的X-Apig
nput的列表 outputs 服务部署节点的输出列表 是 ServiceOutput或者ServiceOutput的列表 title title信息,主要用于前端的名称展示 否 str description 服务部署节点的描述信息 否 str policy 节点执行的policy
Step3 部署在线服务 将Step2 部署模型中创建的AI应用部署为一个在线服务,用于推理调用。 在ModelArts控制台,单击“部署上线 > 在线服务 > 部署”,开始部署在线服务。 图5 部署在线服务 设置部署服务名称,选择Step2 部署模型中创建的AI应用。选择专
提工单扩容。 Step3 部署在线服务 将Step2 部署模型中创建的AI应用部署为一个在线服务,用于推理调用。 在ModelArts控制台,单击“模型部署 > 在线服务 > 部署”,开始部署在线服务。 设置部署服务名称,选择Step2 部署模型中创建的AI应用。选择专属资源池,
Step3 部署在线服务 将Step2 部署模型中创建的AI应用部署为一个在线服务,用于推理调用。 在ModelArts控制台,单击“部署上线 > 在线服务 > 部署”,开始部署在线服务。 图5 部署在线服务 设置部署服务名称,选择Step2 部署模型中创建的AI应用。选择专
it也同步删除掉本地的配置信息,单击“Edit Training Configuration”,找到作业名称,单击右上角的减号并确认删除。 图2 删除配置信息 在弹出的确认对话框中,确认信息无误后,单击“是”删除对应配置信息。删除后您可以创建新的训练作业配置并提交训练作业。 父主题:
问题现象 在线服务部署完成且服务已经处于“运行中”的状态,向服务发起推理请求,预测失败。 原因分析及处理方法 服务预测需要经过客户端、外部网络、APIG、Dispatch、模型服务多个环节。每个环节出现都会导致服务预测失败。 图1 推理服务流程图 出现APIG.XXXX类型的报错,表示请
导入AI应用后部署服务,提示磁盘不足 创建AI应用成功后,部署服务报错,如何排查代码问题 自定义镜像导入配置运行时依赖无效 通过API接口查询AI应用详情,model_name返回值出现乱码 导入AI应用提示模型或镜像大小超过限制 导入AI应用提示单个模型文件超过5G限制 订阅的AI应用一直处于等待同步状态
录结构是什么样的? 问题现象 创建AI应用时,元模型来源指定的OBS目录下存放了自定义的文件和文件夹,都会拷贝到镜像中去。拷贝进去的路径是什么,怎么读取对应的文件或者文件夹里面的内容? 原因分析 通过OBS导入AI应用时,ModelArts会将指定的OBS目录下的所有文件和文件夹
创建AI应用不同方式的场景介绍 AI开发和调优往往需要大量的迭代和调试,数据集、训练代码或参数的变化都可能会影响模型的质量,如不能统一管理开发流程元数据,可能会出现无法重现最优模型的现象。 ModelArts的AI应用可导入所有训练生成的元模型、上传至对象存储服务(OBS)中的元模型和容器镜像
整个运维过程会对服务请求失败和资源占用过高的场景进行监控,当超过阈值时发送告警通知。 图2 监控告警流程图 方案优势 通过端到端的服务运维配置,可方便地查看业务运行高低峰情况,并能够实时感知在线服务的健康状态。 约束限制 端到端服务运维只支持在线服务,因为推理的批量服务和边缘服务无CES监
自动学习和订阅算法有什么区别? 针对不同目标群体,ModelArts提供不同的AI开发方式。 如果您是新手,推荐您使用自动学习实现零代码模型开发。当您使用自动学习,系统会自动选择适合的算法和适合的参数进行模型训练。 如果您是AI开发进阶者,通过订阅算法进行模型训练有更多算法上的选择,并且您可以自定义训练所需的参数。
"best_of":2 Step6 推理服务的高阶配置(可选) 如需开启以下高阶配置,请在Step3 配置NPU环境时增加需要开启的高阶配置参数。 词表切分 在分布式场景下,默认不使用词表切分能提升推理性能,同时也会增加单卡的显存占用。不建议开启词表并行,如确需使用词表切分,配置以下环境变量。 export
如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y docker-engine.aarch64
”,表示配置模型推理代码需要的依赖包,需要提供依赖包名、安装方式和版本约束的信息,详细参数见模型配置文件编写说明。导入模型时,模型配置文件中的安装包依赖参数“dependencies”如何编写? 解决方案 安装包存在前后依赖关系。例如您在安装“mmcv-full”之前,需要完成“
模型转换指定OBS路径。 按需配置。 表2 部署上线所需权限 业务场景 依赖的服务 依赖策略项 支持的功能 配置建议 部署服务 ModelArts modelarts:service:* 部署、启动、查新、更新模型服务。 建议配置。 仅在严格授权模式开启后,需要显式配置左侧权限。 LTS lts:logs:list
提工单扩容。 Step3 部署在线服务 将Step2 部署模型中创建的AI应用部署为一个在线服务,用于推理调用。 在ModelArts控制台,单击“模型部署 > 在线服务 > 部署”,开始部署在线服务。 设置部署服务名称,选择Step2 部署模型中创建的AI应用。选择专属资源池,
ModelArts SDK下载文件目标路径设置为文件名,部署服务时报错 问题现象 ModelArts SDK在OBS下载文件时,目标路径设置为文件名,在本地IDE运行不报错,部署为在线服务时报错。 代码如下: session.obs.download_file(obs_path,
在ModelArts中创建训练作业,并完成模型训练,在得到满意的模型后,可以将训练后得到的模型导入至模型管理,方便统一管理,同时支持将模型快速部署上线为服务。 约束与限制 针对使用订阅算法的训练作业,无需推理代码和配置文件,其生成的模型可直接导入ModelArts。 使用容器化部署,导入的元模型有大小限制,详情请参见导入AI应用对于镜像大小限制。