检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
一个在线测试服务,供您模拟在线测试,帮助您有效评估模型,最终获得一个满意的模型。 评估模型 部署服务 模型准备完成后,您可以部署服务,用于检测和识别车牌,也可以直接调用对应的API和SDK识别。 部署服务 父主题: 无监督车牌检测工作流
图片、框选参照字段和识别区、上传训练集,自动训练并生成模板分类器和文字识别模型,并将生成的模型部署为在线服务。部署完成后,用户可通过在线服务自动分类模板并识别模板中的文字。 首先,请仔细阅读准备工作罗列的要求,提前完成准备工作。使用多模板分类工作流开发应用的步骤如下所示: 步骤1:准备数据
字识别和结构化提取。 训练分类器 评估应用 通过上传测试图片,在线评估模板分类情况和模板的文字识别情况,保证能在多个模板情况下正确分类测试图片的模板,并且能正确识别测试图片中的识别区文字。 评估应用 部署服务 模板图片评估后,可以部署模板至文字识别开发套件中,开发属于自己的文字识
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如准确率、召回率等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选择“第二相面积含量测
根据业务需求填写“基本信息”、“工作流配置”和“资源配置”。 基本信息 包括“应用名称”(必填项)、“应用负责人”和“应用描述”。 图2 基本信息 工作流配置 选择“所属行业”和“选择工作流”。 图3 工作流配置 资源配置 图4 资源配置 分别选择“数据处理资源”、“模型训练资源”、“测试资源部署”,即用于
支持将开发好的服务或技能一键部署到端、边、云的各种场景上。 在线部署:将服务或技能部署为在线推理服务,可以实现高并发,低延时,弹性伸缩,并且支持多模型灰度发布、A/B测试。将应用部署为一个Web Service,并且提供在线的测试与监控能力。 HiLens部署:将服务或技能部署在边缘设备HiLens K
“边缘服务”:将服务部署至边缘设备。当前边缘服务部署支持的智能边缘设备为Atlas 500。 热轧钢板表面缺陷检测工作流和零售商品识别工作流仅支持“在线部署”,云状识别工作流和刹车盘识别工作流支持“在线部署”和“HiLens部署”。 使用HiLens部署开发应用前,需要提前在华为HiLens控制台注册Atlas
评估应用 确定模板图片的参照字段和识别区后,需要对模板图片进行评估和考察。您可以通过上传测试图片,在线评估模板的识别情况,保证能正确识别同样模板下其他图片中的识别区文字。 前提条件 已在文字识别套件控制台选择“通用单模板工作流”新建应用,并完成框选识别区步骤,详情请见框选识别区。
管理数据集 数据集存储在OBS中。 数据集的标注信息存储在OBS中。 支持从OBS中导入数据。 训练模型 训练模型使用的数据集存储在OBS中。 训练模型的运行脚本存储在OBS中。 训练模型输出的模型存储在指定的OBS中。 部署应用 将存储在OBS中的应用部署上线为在线服务。 视觉套件 视觉
管理数据集 数据集存储在OBS中。 数据集的标注信息存储在OBS中。 支持从OBS中导入数据。 训练模型 训练模型使用的数据集存储在OBS中。 训练模型的运行脚本存储在OBS中。 训练模型输出的模型存储在指定的OBS中。 部署应用 将存储在OBS中的应用部署上线为在线服务。 视觉套件 视觉
工作流指在具体行业场景下固定开发流程所构建的开发流水线,无需深究AI知识,按照工作流指引即可开发AI应用,解决特定场景问题。 开发应用 开发应用指通过工作流指引完成自主定制AI应用的开发,使所开发的应用在特定场景下能够解决具体问题。 资源池 用于数据处理、模型训练、服务部署的资源池和资源类型,分为“公共资源池”和“专属资源池”。
文字识别套件基于丰富的文字识别算法和行业知识积累,帮助客户快速构建满足不同业务场景需求的文字识别服务,实现多种版式图像的文字信息结构化提取。 文字识别套件的介绍请参见产品介绍。 预置工作流 文字识别套件当前提供了单模板工作流和多模板工作流,自主构建文字识别模板,识别模板图片中的文字,提供高
续训练模型操作是基于您选择的训练数据集。 选择数据 训练模型 选择训练数据后,基于已标注的训练数据,选择预训练模型、配置参数,用于训练安全帽检测模型。 训练模型 评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。 一些常用的指标,如精准率、召回率、F1
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选择“云状识别工作
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在“工业智能体控制台>工业AI开发>工
正确标签所对应样本的正确标签和预测标签,您可以对比正确标签和预测标签,判断当前模型对该样本的预测是否正确。 例如搜索框内输入标签“1”,下方会显示正确标签为“1”的样本中,预测正确的样本数在验证集中的占比。右侧显示正确标签为“1”的样本信息,包括样本的正确标签和预测标签。 图2 详细评估
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选择“热轧钢板表面
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法参数、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在自然语言处理套件控制台选择“通
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选择“刹车盘识别工
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选择“无监督车牌检