检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
训练作业、模型推理(即模型管理和部署上线)支持的AI框架及其版本,请参见如下描述。 统一镜像列表 ModelArts提供了ARM+Ascend规格的统一镜像,包括MindSpore、PyTorch。适用于Standard开发环境,模型训练,服务部署,请参考下表。镜像的URL、包含
自动学习生成的模型,不支持下载使用。 图1 自动学习生成的模型 自动学习生成的模型,支持哪些其他操作 支持部署为在线服务、批量服务或边缘服务。 在自动学习页面中,仅支持部署为在线服务,如需部署为批量服务或边缘服务,可在“模型部署”页面部署。 支持发布至市场 将产生的模型发布至AI Gallery,共享给其他用户。
CUDA is not enabled” 原因分析 出现该问题的可能原因如下: 新安装的包与镜像中带的CUDA版本不匹配。 处理方法 必现的问题,使用本地Pycharm远程连接Notebook调试安装。 先远程登录到所选的镜像,使用“nvcc -V”查看目前镜像自带的CUDA版本。
当前环境未装OpenSSH或者OpenSSH未安装在默认路径下,详情请参考VS Code文档。 解决方法 如果当前环境未安装OpenSSH,请下载并安装OpenSSH。 当通过“可选功能”未能成功安装时,请手动下载OpenSSH安装包,然后执行以下步骤: 下载zip包并解压放入“
准备镜像 镜像方案说明 ECS获取和上传基础镜像 使用基础镜像 ECS中构建新镜像 父主题: 准备工作
准备镜像 镜像方案说明 ECS获取和上传基础镜像 使用基础镜像 ECS中构建新镜像 父主题: 准备工作
准备镜像 镜像方案说明 ECS获取和上传基础镜像 使用基础镜像 ECS中构建新镜像 父主题: 准备工作
在详情页面单击“下载”。弹出“选择云服务区域”,选择区域后单击“确定”进入下载详情页面。根据数据集下载至OBS还是ModelArts数据集列表,填写不同配置信息: ModelArts数据管理模块在重构升级中,对未使用过数据管理的用户不可见。建议新用户选择将数据集下载至OBS使用。 将数据集下载至OBS
7-cpu-ubuntu_18.04-x86_64-uid1000-20221222203856-fcc979e", "tag": "develop-remote-pyspark_2.4.5-py_3.7-cpu-ubuntu_18.04-x86_64-uid1000-20221222203856-fcc979e"
者方法 第三方pip源中的python包版本更新,导致在训练作业中安装的python包的版本可能也会发生变化。如训练作业之前无此问题,后面一直有此问题,则考虑是此原因。 处理方法 通过Notebook调试。 安装时指定版本。如:pip install xxx==1.x.x 第三方
准备镜像 镜像方案说明 ECS获取和上传基础镜像 使用基础镜像 ECS中构建新镜像 父主题: 准备工作
准备镜像 镜像方案说明 ECS获取和上传基础镜像 使用基础镜像 ECS中构建新镜像 父主题: 准备工作
准备镜像 镜像方案说明 ECS获取和上传基础镜像 使用基础镜像 ECS中构建新镜像 Notebook中构建新镜像 父主题: 准备工作
在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。 配置本地IDE(Pycharm或者VSCode)联接云上环境调试请参考使用本地IDE开发模型。 父主题: OBS操作相关故障
https://gitee.com/ascend/msit.git 进入到msit/msmodelslim的目录;并在进入的msmodelslim目录下,运行安装脚本install.sh。 cd msit/msmodelslim bash install.sh 执行install过程会下载依赖包,因此需要确保能够访问到pip源。
为了同时兼容onnx模型和mindir模型都能够在适配后的pipeline中运行,需要对于Model进行封装。MsliteModel各参数模型说明已给出,根据模型初始化参数设置当前模型使用onnx模型(运行在CPU上)或mindir模型(运行在昇腾设备上),也能够方便进行精度的校验。 # mslite_model_proxy
configuration中选择Python File,其他语言操作类似。如下图所示: 步骤三:编辑launch.json,增加justMyCode": false配置,如下所示。 { "version": "0.2.0", "configurations":
在ModelArts的Notebook的Jupyterlab可以安装插件吗? 在ModelArts的Notebook的CodeLab中能否使用昇腾卡进行训练? 如何在ModelArts的Notebook的CodeLab上安装依赖? 在ModelArts的Notebook中安装远端插件时不稳定要怎么办? 在Mo
包含了本教程中使用到的模型训练代码、推理部署代码和推理评测代码。代码包具体说明请参见模型软件包结构说明。 获取路径:Support-E 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。 表2 支持的模型列表 序号 支持模型 支持模型参数量 权重文件获取地址
在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。 配置本地IDE(Pycharm或者VSCode)联接云上环境调试请参考使用本地IDE开发模型。 父主题: 业务代码问题