检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
多的轮次,因而模型会过分记住这些数据,导致无法泛化到其他数据上,最终发生过拟合现象。 欠拟合:当微调数据量很小时,模型无法有效地调整模型的参数,同时也很容易受到数据噪声的干扰,从而影响模型的鲁棒性。当目标任务的难度较大时,该问题将愈加显著。 当然,如果您的可用数据很少,也可以采取
理,每个工程任务下可以保存上限9个候选提示词,进一步基于候选提示词进行比较和评估。 提示词比较 提示词比较支持选择两个候选提示词对其文本和参数进行比较,支持对选择的候选提示词设置相同变量值查看效果。 提示词评估 提示词评估以任务维度管理,支持评估任务的创建、查询、修改、删除。支持
Service,简称OBS)存储数据和模型,实现安全、高可靠和低成本的存储需求。 与ModelArts服务的关系 盘古大模型使用ModelArts服务进行算法训练部署,帮助用户快速创建和部署模型。 与云搜索服务的关系 盘古大模型使用云搜索服务CSS,加入检索模块,提高模型回复的准确性、解决内容过期问题。
洗流程的搭建,搭建过程中可以通过“执行节点”功能查看算子对数据的清洗效果。算子功能的详细介绍请参见清洗算子功能介绍。 图3 执行节点 用户配置算子后推荐增加、显示备注信息,用于团队其他成员快速了解算子编排。 图4 增加并显示备注信息 对于搭建满意的清洗流程,可以“发布模板”,后续
在“我的凭证”页面,获取项目ID(project_id),以及账号名、账号ID、IAM用户名和IAM用户ID。 在调用盘古API时,获取的项目id需要与盘古服务部署区域一致,例如盘古大模型当前部署在“西南-贵阳一”区域,需要获取与贵阳一区域的对应的项目id。 图2 获取项目ID 多项目时,展开“所属区域”,从“项目ID”列获取子项目ID。
是华为云推出的集数据管理、模型训练和模型部署为一体的一站式大模型开发与应用平台。平台提供了包括盘古大模型在内的多种大模型服务,支持大模型的定制开发,并提供覆盖全生命周期的大模型工具链。 盘古大模型为开发者提供了一种简单高效的方式来开发和部署大模型。通过数据工程、模型开发和应用开发
推理资产不足,现有资源无法满足同时部署多个模型时,可以扩容模型推理资产。 在“平台管理 > 资产管理 > 模型推理资产”中,单击操作列“扩容”执行扩容操作。 图4 扩容模型推理资产 不同类型的模型在部署时,做占用的推理资产数量存在差异,部署模型时所占的推理资产数量与模型类型关系如下。 表1 部署模型 模型类型
型相比,BI专业大模型更适合执行数据分析、报告生成和业务洞察等任务。 模型推理资产即部署模型所需的cpu、gpu资源(专属资源池)。如果不订购推理资产,可以使用订购的盘古模型进行训练,但无法部署训练后的模型。 登录盘古大模型套件平台。 在服务“总览”页面,单击“立即购买”,平台将
服务列表”中选择需要调用的模型,并单击操作列的“调用路径”。 图2 服务概览页面 在弹窗中可获取对应模型的API请求地址。其中,路径选中部分即为模型的部署ID(deployment_id)。 图3 获取API请求地址 父主题: 附录
采用INT8的压缩方式,INT8量化可以显著减小模型的存储大小与降低功耗,并提高计算速度。 模型经过量化压缩后,不支持评估操作,但可以进行部署操作。 创建模型压缩任务 登录盘古大模型套件平台。 在左侧导航栏中选择“模型开发 > 模型压缩”。 单击界面右上角“创建压缩任务”,进入创建压缩任务页面。
为什么微调后的模型,评估结果很好,但实际场景表现却很差 当您在微调过程中,发现模型评估的结果很好,一旦将微调的模型部署以后,输入一个与目标任务同属的问题,回答的结果却不理想。这种情况可能是由于以下几个原因导致的,建议您依次排查: 测试集质量:请检查测试集的目标任务和分布与实际场景
的模型进行开发和应用。 表1 NLP大模型清单 模型类别 模型 token 简介 NLP大模型 盘古-NLP-N1-基础功能模型-32K 部署可选4096、32768 基于NLP-N1-基模型训练的基础功能模型,具备文案生成、多轮对话、实体抽取、翻译、知识问答等大模型通用能力,具有32K上下文能力,可外推至128K。
权限。 模型开发人员 具备总览、服务管理、能力调测、数据工程(数据管理、数据清洗)、模型开发(模型管理、模型训练、模型评估、模型压缩、模型部署)、平台管理(资产管理、权限管理)功能的使用权限。 推理服务API调用人员 具备总览、服务管理、能力调测、平台管理(权限管理)、运营面板功能的使用权限。
而提高模型的整理效果。 表2 NLP大模型清单 模型类别 模型 token 简介 NLP大模型 盘古-NLP-N1-基础功能模型-32K 部署可选4096、32768 基于NLP-N1-基模型训练的基础功能模型,具备文案生成、多轮对话、实体抽取、翻译、知识问答等大模型通用能力,具有32K上下文能力,可外推至128K。