检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
大模型开发基本概念 大模型相关概念 概念名 说明 大模型是什么 大模型是大规模预训练模型的简称,也称预训练模型或基础模型。所谓预训练模型,是指在一个原始任务上预先训练出一个初始模型,然后在下游任务中对该模型进行精调,以提高下游任务的准确性。大规模预训练模型则是指模型参数达到千亿、
文本类数据集格式要求 ModelArts Studio大模型开发平台支持创建文本类数据集,创建时可导入多种形式的数据,具体格式要求详见表1。 表1 文本类数据集格式要求 文件内容 文件格式 文件要求 文档 txt、mobi、epub、docx、pdf 单个文件大小不超过50GB,文件数量最多1000个。
全生命周期的大模型工具链。 ModelArts Studio大模型开发平台为开发者提供了一种简单、高效的开发和部署大模型的方式。平台提供了包括数据处理、模型训练、模型部署、Agent开发等功能,以帮助开发者充分利用盘古大模型的功能。企业可以根据自己的需求选取合适的大模型相关服务和产品,方便地构建自己的模型和应用。
订购盘古大模型服务 订购模型与资源 ModelArts Studio大模型开发平台支持订购模型资产、数据资源、训练资源、推理资源,支持模型资产的包年/包月订购、资源的包年/包月和按需计费订购。 模型资产:模型资产可用于模型开发、应用开发等模块。当前支持订购NLP大模型、CV大模型
对预置的模型资产执行以下操作: 查看模型历史版本。在“版本列表”页面,可查看模型的各个版本。 训练、压缩、部署操作。在“版本列表”页面,可对不同版本模型执行训练、压缩或部署操作。单击相应按钮,将跳转至相关操作页面。 查看操作记录。在“操作记录”页面,可查看当前模型的操作记录。 单
常见问题 使用java sdk出现第三方库冲突 当出现第三方库冲突的时,如Jackson,okhttp3版本冲突等。可以引入如下bundle包(3.0.40-rc版本后),该包包含所有支持的服务和重定向了SDK依赖的第三方软件,避免和业务自身依赖的库产生冲突: <dependency>
要保障在图片中人眼能清晰辨别目标。 图片分辨率大于640x640 px,关于拍摄角度、距离、分辨率等画面拍摄条件,需要保证训练集图片和测试部署时的图片保持一致。 构建CV大模型数据集流程 在ModelArts Studio大模型开发平台中,使用数据工程构建盘古CV大模型数据集流程见表2。
方案设计 虽然传统人工翻译可以提供高质量的结果,但其效率较低且成本高昂。相对而言,机器翻译虽然在速度和成本上具备优势,但在准确性和语境理解上仍存在一定的不足,例如,处理复杂、专业的内容时。 为了解决这些问题,构建一个自动化的多语言翻译工作流显得尤为重要。通过集成翻译工具(如机器翻
为什么微调后的盘古大模型的回答中会出现乱码 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果中出现了其他语言、异常符号、乱码等字符。这种情况可能是由于以下几个原因导致的,建议您依次排查: 数据质量:请检查训练数据中是否存在包含异常字符的数据,可以通过规则进行清洗。
为什么微调后的盘古大模型的回答会异常中断 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果不完整,出现了异常截断。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“最大Token限制”参数的设置,适当增加该参数的值,可
附录 状态码 错误码 获取项目ID 获取模型部署ID
开发盘古专业大模型 部署专业大模型
提示词写作常用方法论 提示词工程是一项将知识、技巧和直觉结合的工作,需要通过不断实践实现模型输出效果的提升。提示词和模型之间存在着密切关系,本指南结合了大模型通用的提示工程技巧以及盘古大模型的调优实践经验,总结的一些技巧和方法更为适合基于盘古大模型的提示工程。 本文的方法论及技巧
应用 功能介绍 通过调用创建好的应用API,输入问题,将得到应用执行的结果。 URI 获取URI方式请参见请求URI。 POST /v1/{project_id}/agent-run/agents/{agent_id}/conversations/{conversation_id}
开发盘古CV大模型 使用数据工程构建CV大模型数据集 训练CV大模型 部署CV大模型
开发盘古预测大模型 使用数据工程构建预测大模型数据集 训练预测大模型 部署预测大模型
程中,通过设定训练指标来监控模型的表现,确保其达到预期的效果。完成微调后,将对用户模型进行评估并进行最终优化,以确保满足业务需求,然后将其部署和调用,用于实际应用。 CV大模型选择建议 选择合适的CV大模型类型有助于提升训练任务的准确程度。您可以根据模型适用场景,选择合适的模型,从而提高模型的整体效果,详见表1。
开发盘古科学计算大模型 使用数据工程构建科学计算大模型数据集 训练科学计算大模型 部署科学计算大模型 调用科学计算大模型
为什么微调后的盘古大模型总是重复相同的回答 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成了复读机式的结果,即回答中反复出现某一句话或某几句话。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“话题重复度控制”或“温度”或
为什么微调后的盘古大模型评估结果很好,但实际场景表现很差 当您在微调过程中,发现模型评估的结果很好,一旦将微调的模型部署以后,输入一个与目标任务同属的问题,回答的结果却不理想。这种情况可能是由于以下几个原因导致的,建议您依次排查: 测试集质量:请检查测试集的目标任务和分布与实际场