检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
管理工作流 Agent开发平台支持对工作流执行复制、获取工作流ID、删除、导入、导出操作。 获取工作流ID、删除工作流 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“Agent开发”,跳转至Agent开发平台。 进入“工作台
工客服,可以处理更多的客户咨询,且响应速度快;降低运营成本:企业可以通过智能客服处理大部分的常规问题,将人工客服释放出来处理更复杂、更个性化的客户需求;个性化服务:基于大模型的智能客服能够学习和适应用户的行为模式和偏好,提供更加个性化的服务。 农业 科学计算大模型包括全球中期天气
为什么在微调后的盘古大模型中输入训练样本问题,回答完全不同 当您将微调的模型部署以后,输入一个已经出现在训练样本中,或虽未出现但和训练样本差异很小的问题,回答完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程
权限管理 如果您需要对华为云上购买的盘古大模型资源,为企业中的员工设置不同的访问权限,以达到不同员工之间的权限隔离,您可以使用统一身份认证服务(IAM)和盘古角色管理功能进行精细的权限管理。 如果华为云账号已经能满足您的要求,不需要创建独立的IAM用户(子用户)进行权限管理,您可
盘古大模型服务通过多种数据保护手段和特性,保障存储在服务中的数据安全可靠。 表1 盘古大模型的数据保护手段和特性 数据保护手段 简要说明 传输加密(HTTPS) 盘古服务使用HTTPS传输协议保证数据传输的安全性。 基于OBS提供的数据保护 基于OBS服务对用户的数据进行存储和保
问题二:文本翻译失败,如图2,工作流不输出翻译后的内容,始终处于提问状态。 图2 文本翻译失效 可能原因:如图3,提问器节点的Prompt指令配置有误,指令中的参数与节点配置的输出参数不对应。 图3 提问器节点配置错误示例 解决方法:按照图4,正确配置提问器节点的指令,配置正确后的试运行效果如图5。 图4
通过基模型训练出行业大模型和提示词写作的最佳实践,您将深入掌握行业模型的定制化流程与高效提示词构建方法,确保在实际应用中充分发挥盘古大模型的行业优势,提升业务效果。 最佳实践 提示词写作实践 Agent应用实践 06 API 通过API文档的概述、NLP大模型API和科学计算大模型API的详细介绍,您将
训练集和验证集均推荐使用>1个月的历史数据。 训练数据一般可通过公开数据集获取,例如ERA5。ERA5是由欧洲中期天气预报中心(ECMWF)提供的全球气候的第五代大气再分析数据集,它覆盖从1940年1月至今的时间段,提供每小时的大气、陆地和海洋气候变量的估计值。 ERA5数据下载官方
验证。 登录“我的凭证”页面,获取“IAM用户名”、“账号名”以及待使用区域的“项目ID”。调用服务时会用到这些信息,请提前保存。 由于盘古大模型当前部署在“西南-贵阳一”区域,需要获取与“西南-贵阳一”区域对应的project id。 图1 获取user name、domain
用于获取操作API的权限。获取Token接口响应消息头中X-Subject-Token的值即为Token。 Content-Type 是 String 发送的实体的MIME类型,参数值为“application/json”。 使用AppCode认证方式的请求Header参数见表2。 表2 请求Header参数(APPCode认证)
理规律,利用神经网络编码微分方程,通过AI模型更快速、更精准地解决科学计算问题。 ModelArts Studio大模型开发平台为用户提供了多种规格的科学计算大模型,以满足不同场景和需求。以下是当前支持的模型清单,您可以根据实际需求选择最合适的模型进行开发和应用。 表1 盘古科学计算大模型规格
续费 包周期服务到期后,您可以通过手动续费来延长服务的有效期。 包周期服务到期后,如果在保留期结束前未完成续费,后续则不能再对已过保留期的服务进行续费操作,需重新购买对应的服务。
少于xx个字的文本。”,将回答设置为符合要求的段落。 续写:根据段落的首句、首段续写成完整的段落。 若您的无监督文档没有任何结构化信息,可以将有监督的问题设置为“以下是一篇文章的第一个句子:xxx/第一段落:xxx。请根据以上的句子/段落,续写为一段不少于xx个字的文本。”,再将回答设置为符合要求的段落。
Models)通常指的是具有海量参数和复杂结构的深度学习模型,广泛应用于自然语言处理(NLP)等领域。开发一个大模型的流程可以分为以下几个主要步骤: 数据集准备:大模型的性能往往依赖于大量的训练数据。因此,数据集准备是模型开发的第一步。首先,需要根据业务需求收集相关的原始数据,确保数据的覆盖面和多样性。例如
Gallery”页签,可对从AI Gallery订阅的数据资产执行以下操作: 查看订阅信息。单击具体数据资产或操作列的“查看订阅信息”,查看该资产的名称描述等订阅信息。 编辑属性操作。单击操作列的“更多 > 编辑属性”,可编辑数据资产的名称、描述以及资产可见性。 删除操作。单击操作列的“更多 > 删除”,可删除当前数据资产。
提示词工程 在“撰写”页面,选择左侧导航栏中的“候选”。在候选列表中,勾选需要进行横向比对的提示词,并单击“横向比较”。 图2 横向比较 进入到横向比较页面,下拉页面至“提示词效果比较”模块,比较提示词的效果,输入相同的变量值,查看两个提示词生成的结果。 图3 横向比对提示词效果 父主题:
您可以从平台的训练日志中获取到每一步的Loss,并绘制成Loss曲线。本场景的一个Loss曲线示例如下: 图2 query改写/中控模型微调时的Loss曲线 图3 问答模型微调时的Loss曲线 通过观察,Loss曲线随着迭代步数的增加呈下降趋势直至稳定,证明整个训练状态是正常的。 模型持续优化:
录和管理数据集的版权信息,确保数据的使用合法合规,并清晰地了解数据集的来源和相关的版权授权。通过填写这些信息,可以追溯数据的来源,明确数据使用的限制和许可,从而保护数据版权并避免版权纠纷。 单击页面右下角“立即创建”,回退至“数据导入”页面,在该页面可以查看数据集的任务状态,若状态为“运行成功”,则数据导入成功。
模型训练的标准,是数据工程中的核心环节。 数据清洗 通过专用的清洗算子对数据进行预处理,确保数据符合模型训练的标准和业务需求。不同类型的数据集使用专门设计的算子,例如去除噪声、冗余信息等,提升数据质量。 数据合成 利用预置或自定义的数据指令对原始数据进行处理,并根据设定的轮数生成
Agent开发平台的工作流由多个节点构成,节点是组成工作流的基本单元。平台支持多种节点,包括开始、结束、大模型、意图识别、提问器、插件、判断、代码和消息节点。 创建工作流时,每个节点需要配置不同的参数,如输入和输出参数等,开发者可通过拖、拉、拽可视化编排更多的节点,实现复杂业务流程的编排,从而快速构建应用。