检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
申请体验盘古大模型服务 盘古大模型为用户提供了五大模型的体验,包括NLP大模型、CV大模型、多模态大模型、预测大模型与科学计算大模型,用户可根据所需提交体验申请,申请通过后才可以体验盘古大模型功能。 登录盘古大模型套件平台。 在服务“总览”页面,单击“立即体验”,平台将跳转至盘古大模型体验申请页面。
申请体验盘古大模型服务 盘古大模型为用户提供了五大模型的体验,包括NLP大模型、CV大模型、多模态大模型、预测大模型与科学计算大模型,用户可根据所需提交体验申请,申请通过后才可以体验盘古大模型功能。 登录盘古大模型套件平台。 在服务“总览”页面,单击“立即体验”,平台将跳转至盘古大模型体验申请页面。
token解析失败,请检查获取token的方法,请求体信息是否填写正确,token是否正确;检查获取token的环境与调用的环境是否一致。 token超时(token expires) ,请重新获取token,使用不过期的token。 请检查AK/SK是否正确(AK对应的SK错误,不匹配;AK/SK中多填了空格)。
调用说明 盘古大模型提供了REST(Representational State Transfer)风格的API,支持您通过HTTPS请求调用,调用方法请参见如何调用REST API。 调用API时,需要用户网络可以访问公网。 父主题: 使用前必读
盘古大模型为开发者提供了一种简单高效的方式来开发和部署大模型。通过数据工程、模型开发和应用开发等功能套件,帮助开发者充分发挥盘古大模型的强大功能。企业可根据自身需求选择合适的大模型相关服务和产品,轻松构建自己的模型。 数据工程套件 数据是大模型训练的基础,为大模型提供了必要的知识和信息。数据工程
endpoint需要根据服务所在的区域正确配置,参考帮助文档“终端节点”章节查找。 参考IAM帮助文档,获取账号相关信息。 华为云Gallery托管三方模型 否 Gallery三方托管模型API调用URL。 华为云IAM账号认证信息。 三方大模型API参考文档: 申请资源时,可联系客户支持获取。 IAM帮助文档:
配置知识库 大模型在进行训练时,使用的是通用的数据集,这些数据集没有包含特定行业的数据。通过知识库功能,用户可以将领域知识上传到知识库中,向大模型提问时,大模型将会结合知识库中的内容进行回答,解决特定领域问题回答不准的现象。 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发
数据工程套件作为盘古大模型的重要组成部分,具备数据获取、清洗、配比和管理等功能。该套件能够高效收集和处理各种格式的数据,满足不同训练和评测任务的需求。 通过提供自动化的质量检测和数据清洗能力,对原始数据进行优化,确保其质量和一致性。同时,数据工程套件还提供强大的数据存储和管理能力,为大模型训练提供高质量的数据支撑。
X-Auth-Token 是 String 用户Token。 用于获取操作API的权限。获取Token接口响应消息头中X-Subject-Token的值即为Token。 Content-Type 是 String 发送的实体的MIME类型,参数值为“application/json”。
考察模型逻辑 虽然模型的思考过程是个黑盒,但可以通过反问模型答案生成的逻辑或提问模型是否理解任务要求,考察模型生成的逻辑,提升模型思维过程的可解释性。 对于模型答案的反问 如果模型给出了错误的答案,可以反问模型回答的逻辑,有时可以发现错误回答的根因,并基于此修正提示词。 在反问时
模型训练完成后,可以通过迁移(导入模型、导出模型)功能将本局点训练的模型导出,或将其他局点训练的模型导入本局点进行使用。 支持迁移操作的模型可以在“模型开发 > 模型管理 > 我的模型”中查看。 图1 模型管理 导入/导出模型 以从环境A迁移模型到环境B为例: 登录环境B的盘古大模型套件平台,在“模型开发
提示工程是一项将知识、技巧和直觉结合的工作,需要通过不断实践实现模型输出效果的提升。提示词和模型之间存在着密切关系,本指南结合了大模型通用的提示工程技巧以及盘古大模型的调优实践经验,总结的一些技巧和方法更为适合基于盘古大模型的提示工程。 本文的方法论及技巧部分使用了较为简单的任务作为示例,以便简
盘古推理SDK简介 推理SDK概述 盘古大模型推理SDK是对REST API进行的封装,通过该SDK可以处理用户的输入,生成模型的回复,从而实现自然流畅的对话体验。 表1 推理SDK清单 SDK分类 SDK功能 支持语言 使用场景 推理SDK 对话问答(多轮对话)(/chat/completions)
什么情况下需要微调 微调的目的是为了提升模型在某个特定任务或领域的表现。在大多数场景下,通过Prompt工程,通用模型也能给出比较满意的回答。但如果您的场景涉及以下几种情况,则建议采用微调的手段来解决: 目标任务依赖垂域背景知识:通用模型学习到的知识大部分都是来自互联网上的开源数据,如果目
撰写提示词 提示词是用来引导模型生成的一段文本。撰写的提示词应该包含任务或领域的关键信息,如主题、风格和格式等。 撰写提示词时,可以设置提示词变量,即在提示词中通过添加占位符{{ }}标识,表示一些动态的信息,让模型根据不同的情况生成不同的文本,增加模型的灵活性和适应性。例如,将提示词
阈值:指工具召回的相关性得分的阈值。阈值越高,召回工具的数量越少,但对召回工具的准确性要求更高。 多轮改写模型:对用户的问题进行多次改写,以增加召回内容的多样性。 检索工具数量:指在处理用户问题时,会检索出相关性最高的前N个工具。 历史信息处理策略 设置处理和利用用户历史对话信息的策略。
工程任务下候选提示词页面。 图1 提示词工程 勾选所需的提示词,并单击“保存到模板库”。 图2 保存提示词到模板库 进入“应用开发 > 提示词管理 > 我的提示词”页面,查看发布的提示词。 图3 我的提示词 父主题: 提示词工程
训练数据集是用于模型训练的实际数据集。通常,通过创建一个新的数据集步骤,可以生成包含某个特定场景数据的数据集。例如,这个数据集可能只包含用于训练摘要提取功能的数据。然而,在实际模型训练中,通常需要结合多种任务类型的数据,而不仅限于单一场景的数据。因此,实际的训练会混合不同类型的数据。例如,为
基于已有的知识库,进行摘要总结。有stuff、refine、map-reduce策略。 Stuff:将所有文档直接填充到prompt中,提给模型处理,适合文档较少的场景。 from pangukitsappdev.api.embeddings.factory import Embeddings from
vector_api = Vectors.of("css", vector_store_config) # 检索 query = "杜甫的诗代表了什么主义诗歌艺术的高峰?" docs = vector_api.similarity_search(query, 4) # 问答 doc_skill