检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Step6 准备镜像 创建ECS。 参考ECS文档购买弹性云服务器。网络配置、高级配置等后续步骤,可根据默认选择,或进行自定义。创建完成后,单击“远程登录”,并在控制台发送后续步骤中的远程命令。 注意:创建的ECS虚拟机使用ARM镜像创建。 图1 购买ECS 安装Docker。 检查docker是否安装。
system("ulimit -c 0") 排查数据集大小,checkpoint保存文件大小,是否占满了磁盘空间。 必现的问题,使用本地Pycharm远程连接Notebook调试。 建议与总结 在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接
释放一些不需要的tensor,使用过的,如下: del tmp_tensor torch.cuda.empty_cache() 必现的问题,使用本地Pycharm远程连接Notebook调试超参。 如果还存在问题,可能需要提工单进行定位,甚至需要隔离节点修复。 建议与总结 在创建训练作业前,推荐您先使用Mo
"模型路径:$model_path" echo "挂载路径:$mount_path" echo "node_ips: ${node_ips[*]}" # 将数组元素以空格连接成字符串,再使用tr将空格替换为逗号 NODE_IPS=$(printf "%s " "${node_ips[@]}" | tr ' ' '
├──install.sh #安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 ├──vllm_ppl.py #ppl精度测试脚本
描述:描述数据集详细信息。 图1 下载详情 确认无误后单击右下角“确定”。 系统会跳转到我的下载页面,单击按钮,查看下载进度,等待数据集下载完成(下载完成大约需要5分钟,请耐心等待)。单击展开下载详情,可以查看该数据集的“目标位置”。 查看数据集是否已导入ModelArts。 返回ModelA
方式二:使用Java语言发送预测请求 AK/SK签名认证方式,仅支持Body体12M以内,12M以上的请求,需使用Token认证。 客户端须注意本地时间与时钟服务器的同步,避免请求消息头X-Sdk-Date的值出现较大误差。因为API网关除了校验时间格式外,还会校验该时间值与网关收到请求
init_process_group(),然后再根据local_rank()==0去复制数据,之后再调用torch.distributed.barrier()等待所有rank完成复制。具体可参考如下代码: import moxing as mox import torch torch.distributed
VPC后,专属资源池中作业访问公网地址,默认不能转发到用户VPC的SNAT,需要提交工单联系技术支持在专属资源池VPC的路由中添加指向对等连接的默认路由。当您开启默认路由后,在打通VPC时,会给ModelArts网络0.0.0.0/0路由作为默认路由,此时无需提交工单添加默认路由即可完成网络配置。
#安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 父主题: 主流开源大模型基于Lite Server适配Ascend-vLLM
scripts/llama2/0_pl_pretrain_13b.sh 等待模型载入 执行训练启动命令后,等待模型载入,当出现“training”关键字时,表示开始训练。训练过程中,训练日志会在最后的Rank节点打印。 图1 等待模型载入 最后,请参考查看日志和性能章节查看预训练的日志和性能。
其他参数可使用默认值。 参数配置完成后,单击“下一步”,确认规格参数后,单击“提交”启动在线服务的部署。 任务提交成功后,单击“查看服务详情”,等待服务状态变为“运行中”时,表示服务部署成功。预计时长4分钟左右。 图3 服务部署成功 步骤四:预测结果 在线服务部署完成后,单击“预测”页签。
# 推理工具 代码上传至SFS Turbo 将AscendSpeed代码包AscendCloud-LLM-xxx.zip直接上传至ECS服务器中的SFS Turbo中,例如存放在/mnt/sfs_turbo/AscendCloud-LLM-xxx.zip目录下并解压缩。 unzip
# 推理工具 代码上传至SFS Turbo 将AscendSpeed代码包AscendCloud-LLM-xxx.zip直接上传至ECS服务器中的SFS Turbo中,例如存放在/mnt/sfs_turbo/AscendCloud-LLM-xxx.zip目录下并解压缩。 unzip
|──Dockerfile 代码上传至SFS Turbo 将AscendFactory代码包AscendCloud-LLM-xxx.zip直接上传至ECS服务器中的SFS Turbo中,例如存放在/mnt/sfs_turbo/AscendCloud-LLM-xxx.zip目录下并解压缩。 unzip
x86_64架构的主机,操作系统使用Ubuntu-18.04。您可以准备相同规格的弹性云服务器ECS或者应用本地已有的主机进行自定义镜像的制作。 购买ECS服务器的具体操作请参考购买并登录Linux弹性云服务器。“CPU架构”选择“x86计算”,“镜像”选择“公共镜像”,推荐使用Ubuntu18
x86_64架构的主机,操作系统使用Ubuntu-18.04。您可以准备相同规格的弹性云服务器ECS或者应用本地已有的主机进行自定义镜像的制作。 购买ECS服务器的具体操作请参考购买并登录Linux弹性云服务器。“CPU架构”选择“x86计算”,“镜像”选择“公共镜像”,推荐使用Ubuntu18
如果您的在线服务刚创建完成,请等待5~10分钟后查看监控数据。 前提条件: ModelArts在线服务正常运行。 已在云监控页面设置告警规则,具体操作请参见设置告警规则。 在线服务已正常运行一段时间(约10分钟)。 对于新创建的在线服务,需要等待一段时间,才能查看上报的监控数据和监控视图。
# 推理工具 代码上传至SFS Turbo 将AscendSpeed代码包AscendCloud-LLM-xxx.zip直接上传至ECS服务器中的SFS Turbo中,例如存放在/mnt/sfs_turbo/AscendCloud-LLM-xxx.zip目录下并解压缩。 unzip
# 推理工具 代码上传至SFS Turbo 将AscendSpeed代码包AscendCloud-LLM-xxx.zip直接上传至ECS服务器中的SFS Turbo中,例如存放在/mnt/sfs_turbo/AscendCloud-LLM-xxx.zip目录下并解压缩。 unzip