检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
景图,而在迁移试点和大规模上云阶段,则需要打开到每个应用系统的详细技术架构,收集每个应用系统的技术组件的详细信息,如组件版本信息,组件相关配置参数等。 大数据调研:先调研大数据的整体技术架构,然后逐步打开调研详细的信息。 每次的调研工作按照以下6步执行: 根据上云阶段,确定调研目的,梳理需要调研的信息。
擎服务实现业务容器化部署,可通过CCE工作负载弹性伸缩能力实现APP业务的水平扩展,随着负载增加,APP业务POD能自动扩展,随着负载的降低,APP业务POD自动减容,支持配套应用性能监控(AOM)实现告警策略自动触发扩容或减容; 若应用层使用ECS进行部署,则可通过华为云弹性伸
竞价计费:适应于业务稳定性不高,中断也不影响业务的场景,目前仅ECS支持。 优化计费模式与节省成本 华为云提供计费模式的优化建议,帮助企业在不改变资源性能的情况下,通过调整计费模式来节省成本。 按需转包年包月成本优化评估:自动识别客户长期按需使用的资源(比如云主机、云硬盘、RDS数据库),按需转包周期的
练度,减少中断时长,确保切换过程的顺利进行。 预防问题:演练可以帮助发现可能存在的问题,比如切换过程中的应用和批处理任务启停顺序问题、网络配置问题、数据一致性对比等问题,从而提前进行预防和解决。 团队配合:演练可以让团队成员熟悉切换的全流程和切换步骤,从而更好地协同工作,提高团队配合效率。
调研任务调度平台支持的任务类型,包括Jar类任务、SQL类任务、脚本类任务(Python、Shell)等。 调研任务调度平台是否提供可视化和管理界面,以方便任务调度的配置、监控和管理。 了解任务调度平台的容错机制,包括任务失败后的重试机制、故障恢复策略等。 调研数据流: 调研大数据平台及业务的架构图及数据流图,如下图:
存放的是对象,可以直接存放文件,文件会自动产生对应的系统元数据,用户也可以自定义文件的元数据 访问方式 只能在ECS/BMS中挂载使用,不能被操作系统应用直接访问,需要格式化成文件系统(OS层,不涉及应用改造) 在ECS/BMS/CCE中通过网络协议挂载使用,支持NFS/CIFS(通用文件系统不支持CIF
设计云上的大数据集群部署架构时,建议参考原则如下: 优先用大数据云服务:如果源端是自建的大数据集群,在目标云平台上有对应的云服务,且功能、性能、兼容性都满足,经评估改造工作量很小,建议设计大数据集群部署架构时,优先采用大数据云服务。如果目标云平台上没有对应的大数据集群组件,部署架构设计时,
设计原则 大数据的部署架构设计包括大数据集群、大数据任务调度平台和大数据应用,其中大数据应用的部署架构请参考应用架构设计。 图1 大数据架构设计分类 大数据架构设计同样要考虑架构设计的6要素: 成本 可用性 安全性 可扩展性 可运维性 性能 图2 架构设计6要素 父主题: 大数据架构设计
物联网 物联网是指将各种物理设备和传感器与互联网连接起来,实现设备之间的通信和数据交换。以下是物联网如何使能业务创新、与业务结合并推动业务现代化的几个方面: 智能家居和智慧城市:物联网技术可以将家居设备、城市基础设施和公共服务连接起来,实现智能化管理和优化资源利用。通过物联网,人
大数据参考架构 下图是典型的大数据架构,从数据集成、存储、计算、调度、查询和应用,构成了一个完整的数据流。 图1 大数据参考架构 大数据架构通常包括以下几个核心组件和流程,企业可以根据实际需要选择云服务或自建大数据组件: 业务数据源: 业务数据源是大数据平台的数据输入来源,可以是
图所示。在这种运营模式中,所有业务系统都由专门的应用团队独立运营,应用团队不仅负责应用的设计、开发、测试、部署和运维工作,还需要负责业务系统所需IaaS和PaaS资源的部署和运维,同时要确保业务系统的安全性和云资源的成本管理。中心IT团队仅负责制定统一IT标准和IT流程,通过发文
地理冗余:将不同的AZ部署在不同的地理位置,可以防止地区范围的故障,例如自然灾害或电力中断对整个系统的影响。 企业可以基于AZ故障域进行应用的高可用性署设计,设计时可以考虑如下方面: 跨AZ部署:将应用程序的不同组件部署在多个AZ中,以确保即使一个AZ不可用,其他AZ中部署的组件仍能正常
为什么需要Landing Zone 为了实现业务单元的安全和故障隔离,华为云的推荐做法是将不同业务单元的应用系统分别部署在不同的账号中。华为云账号具备以下三个属性。 华为云账号是一个资源容器,用户可以在其中部署任意云资源和上层业务应用系统,不同的账号相当于不同的资源容器,账号之间是完全隔离的。因此在一个
了解过去6个月各企业项目的原始成本月度数据。 按区域汇总的月度成本 了解过去6个月按照区域汇总的原始成本月度数据。 ECS的月度按需成本和使用量 了解过去6个月云主机每月按需原始成本和按需使用量情况。 容器成本洞察 了解CCE集群、命名空间、工作负载粒度的成本分布和趋势。 父主题:
成本和可运维性遵循基础环境的设计进行适配即可。 大数据架构设计:大数据的部署架构设计包括大数据集群部署架构设计、大数据任务调度平台部署架构设计和大数据应用部署架构设计,其中大数据应用的部署架构可以参考应用部署架构的设计方法。大数据架构设计同样要考虑架构设计的6要素。 在做云上架构
障相互隔离。企业可在此基础上构建如下场景的高可用体系: 单AZ部署:通常情况云上不建议单AZ部署,除非是对时延特别敏感的业务,无法接受同Region的AZ间时延,这种情况可以考虑单AZ部署,利用云服务主备、集群化部署模式来满足单个业务节点故障时快速恢复业务的需求,主要利用集群内节
务系统上线管理涵盖环境准备、组织宣贯、风险应急和割接上线实施等环节。 业务系统割接上线前云环境准备通常包含业务环境部署,数据同步(如迁移场景)、周边业务系统协同配置、内外部连通性确认等等,通过这些前提准备提前完成业务系统正常运行的基础平台环境的搭建,确保业务系统上线所需的基础环境处于就绪状态。
应用架构设计 应用部署架构概述 可用性设计 可扩展性设计 性能设计 应用部署参考架构 父主题: 方案设计
大数据迁移上云时,是选择整体迁移还是分批迁移,原则如下: 整体迁移的场景: 规模小:大数据平台数据量少(TB级),计算任务数量不多,可以采用整体迁移的方法,先在云上部署大数据平台,然后全量迁移元数据、数据和任务。 关联关系复杂:大数据任务之间的关联关系很复杂,很难拆分,此时也可以选择整体迁移。 分批迁移的
大数据迁移 调研 设计 部署 迁移 验证 切换 保障 父主题: 采用实施