检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
多方安全计算场景 场景描述 组合架构 可验证代码示例 父主题: 使用场景
横向联邦学习场景 TICS从UCI网站上获取了乳腺癌数据集Breast,进行横向联邦学习实验场景的功能介绍。 乳腺癌数据集:基于医学图像中提取的若干特征,判断癌症是良性还是恶性,数据来源于公开数据Breast Cancer Wisconsin (Diagnostic)。 场景描述
可验证代码示例 数据准备 数据集发布 隐私规则防护 基本计算能力验证 基于MPC算法的高安全级别计算 统计型作业的差分隐私保护 父主题: 多方安全计算场景
创建数据 数据拥有方公司A创建和发布数据集。可供选择有两种数据资产类型:结构化数据集、非结构化数据集。创建数据集后,发布数据集,此时对空间内的所有代理可见。 父主题: 可信数据交换场景
终端节点Endpoint 调用空间API时,需要获取TICS服务终端节点Endpoint。 获取终端节点 终端节点(Endpoint)即调用空间API的请求地址,不同服务不同区域的终端节点不同。 可信智能计算服务的终端节点Endpoint构造规则如下,请您根据业务需要选择对应区域的终端节点。
创建实时预测作业 前提条件 空间组建完成,参考组建空间。 空间成员完成计算节点部署,配置参数时选择挂载方式和数据目录,参考部署计算节点。 空间成员在计算节点中完成数据发布,参考发布数据。 约束限制 避免作业名重复。 必须选择一个已有的FiBiNet模型才能创建实时预测作业。 实时
创建数据集时,不允许使用哪些名字? 问题描述 创建数据集时,对数据集名字有一定约束。 解决办法 创建数据集时,不允许使用如下名字: <EOF> A ABS ABSENT ABSOLUTE ACTION ADA ADD ADMIN AFTER ALL ALLOCATE ALLOW ALTER
为什么我的计算结果每次计算时结果都不一样? 当空间开启了“结果差分隐私”开关时, 对敏感数据字段的sum操作都会添加一个差分噪声,来保护单条敏感数据不被泄露。 如果需要更精确的结果, 可联系空间管理员关闭“结果差分隐私”开关, 或者联系敏感字段的合作方修改字段分类。
一个CCE集群可以为同一用户的多个空间使用吗? TICS计算节点支持部署到CCE集群上。但当前在购买TICS服务时仅支持直接创建CCE集群,不支持选择已有的CCE集群。 因此一个CCE集群只能供一个空间使用,且必须是随TICS服务购买时直接创建的CCE集群,不能是已有集群。 CC
场景描述 数据商业空间中公司B针对公司A的某些数据资产存在业务需求,由于安全性和数据主权的考虑,公司A与公司B基于TICS完成数据资产的交换。基于TICS进行数据资产交换,保证公司A的数据主权、公司B的数据可获得,同时保证交换过程安全可信。 以下是数据拥有方公司A和数据需求方公司B基于TICS平台的操作。
使用TICS可信联邦学习进行联邦建模 场景描述 准备数据 发布数据集 创建可信联邦学习作业 选择数据 样本对齐 筛选特征 模型训练 模型评估 父主题: 纵向联邦建模场景
联邦sql分析作业运行过慢,如何提升执行速度? 提升计算并行度 可以在作业开发界面的运行参数中,填写user.task.concurrency参数,提升用户侧此类加密任务的并行度。推荐该值填4-16左右,不建议超过30。 图1 填写参数 tics.task.concurrency
边缘节点部署模式下创建节点,该如何配置资源分配策略? 使用场景 购买计算节点页面,选择边缘部署模式。 操作步骤 进入购买计算节点页面。 部署配置选择边缘节点部署。 云租户部署模式下,TICS服务可以按照选取的规格,为客户预置默认资源分配策略。 边缘节点部署模式下,使用的纳管节点为
样本对齐 单击右下角的下一步进入“样本对齐”页面,这一步是为了进行样本的碰撞,过滤出共有的数据交集,作为后续步骤的输入。企业A需要选择双方的样本对齐字段,并单击“对齐”按钮执行样本对齐。执行完成后会在下方展示对齐后的数据量及对齐结果路径。 父主题: 使用TICS可信联邦学习进行联邦建模
场景描述 某企业A在进行新客户营销时的成本过高,想要通过引入外部数据的方式提高营销的效果,降低营销成本。 因此企业A希望与某大数据厂商B展开一项合作,基于双方共有的数据进行联邦建模,使用训练出的联邦模型对新数据进行联邦预测,筛选出高价值的潜在客户,再针对这些客户进行定向营销,达成提高营销效果、降低营销成本的业务诉求。
统计型作业的差分隐私保护 本示例作业,以统计各行业的“企业税收总和”与“用电量总和”,进行统计分析: Select industry, sum(tax_bal), sum(electric_bal) from LEAGUE_CREATOR.tax a join
模型评估 训练时的评估指标是用训练的数据集中随机采样的记录计算的,完成训练后企业A也可以使用其他的数据集对同一个模型进行多次的评估。单击“发起评估”选择训练参与方不同的数据集即可发起模型评估。 至此使用可信联邦学习进行联邦建模的过程已经完成,企业A已经训练出了一个符合自己要求的算
场景描述 某企业A在进行新客户营销时的成本过高,想要通过引入外部数据的方式提高营销的效果,降低营销成本。 因此企业A希望与某大数据厂商B展开一项合作,基于双方共有的数据进行联邦建模,使用训练出的联邦模型对新数据进行联邦预测,筛选出高价值的潜在客户,再针对这些客户进行定向营销,达成提高营销效果、降低营销成本的业务诉求。
准备数据 企业A和大数据厂商B需要按照训练模型使用的特征,提供用于预测的数据集,要求预测的数据集特征必须包含训练时使用的特征。 表1 企业A的数据 字段名称 字段类型 描述 id string hash过后的手机号字符串 col0-col4 float 企业A数据特征 industry_predict
基于MPC算法的高安全级别计算 完成demo验证阶段,为提升数据保护级别,接入以纯密文的状态做计算的更高安全级别的数据,可以通过开启高隐私级别开关,提升空间安全级别。 图1 高隐私级别开关 再次单击作业,审批进行的同时敏感数据被进行了同态加密。DAG图显示了“psi + 同态”的