检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
l配置文件在代码目录下的{work_dir}/llm_train/LLaMAFactory/demo.yaml。修改详细步骤如下所示。 选择训练阶段类型。 指令监督微调,复制tune_yaml样例模板内容覆盖demo.yaml文件内容。 DPO偏好训练,复制dpo_yaml样例模板内容覆盖demo
l配置文件在代码目录下的{work_dir}/llm_train/LLaMAFactory/demo.yaml。修改详细步骤如下所示。 选择训练阶段类型。 指令监督微调,复制tune_yaml样例模板内容覆盖demo.yaml文件内容。 DPO偏好训练,复制dpo_yaml样例模板内容覆盖demo
Yaml配置文件在代码目录下的{work_dir}/llm_train/LLaMAFactory/demo.yaml。修改详细步骤如下所示。 选择训练策略类型。 sft,复制sft_yaml样例模板内容覆盖demo.yaml文件内容。 lora,复制lora_yaml样例模板内容覆盖demo
根据在线服务预测报错日志ERROR:input key sound is not in model inputs可知,预测的音频文件是空。预测的音频文件太小,换大的音频文件预测。 父主题: 模型训练
若查看启动作业日志信息,可通过以下命令打印正在启动的日志信息。其中${pod_name}为pod信息中的NAME,例如vcjob-main-0。 kubectl logs -f ${pod_name} 训练过程中,训练日志会在最后的Rank节点打印。 图1 打印训练日志 训练完成后
若查看启动作业日志信息,可通过以下命令打印正在启动的日志信息。其中${pod_name}为pod信息中的NAME,例如vcjob-main-0。 kubectl logs -f ${pod_name} 训练过程中,训练日志会在最后的Rank节点打印。 图1 打印训练日志 训练完成后
Body: body的组装和模型强相关,不同来源的模型body的组装方式不同。 模型为从容器镜像中导入的:需要按照自定义镜像的要求组织,请咨询该镜像的制作人。 模型为从对象存储(OBS)导入的:此时对body的要求会在推理代码中体现,具体在推理代码的_preprocess方法中,该方法将输入的http
Open-Clip广泛应用于AIGC和多模态视频编码器的训练。 方案概览 本方案介绍了在ModelArts的DevServer上使用昇腾NPU计算资源开展Open-clip训练的详细过程。完成本方案的部署,需要先联系您所在企业的华为方技术支持购买DevServer资源。 本方案目前仅适用于企业客户。
因导致的 问题现象 在线服务启动后,当在线服务进入到“运行中”状态后,进行预测,预测请求发出后,收到的响应不符合预期,无法判断是不是模型的问题导致的不符合预期。 原因分析 在线服务启动后,ModelArts提供两种方式的预测: 方式1:在ModelArts的Console的预测页签进行预测;
方式进行调整优化。 优化原理 对于ModelArts提供的GPU资源池,每个训练节点会挂载500GB的NVMe类型SSD提供给用户免费使用。此SSD挂载到“/cache”目录,“/cache”目录下的数据生命周期与训练作业生命周期相同,当训练作业运行结束以后“/cache”目录下
KeyPair: 需要选择保存在本地的Notebook对应的keypair认证。即创建Notebook时创建的密钥对文件,创建时会直接保存到浏览器默认的下载文件夹中。 PathMappings: 该参数为本地IDE项目和Notebook对应的同步目录,默认为/home/ma-us
yaml配置文件在代码目录下的{work_dir}/llm_train/LLaMAFactory/demo.yaml。修改详细步骤如下所示: 选择指令微调类型 sft,复制sft_yaml样例模板内容覆盖demo.yaml文件内容。 lora,复制lora_yaml样例模板内容覆盖demo
本示例仅用于示意Ascend容器镜像制作流程,且在匹配正确的Ascend驱动/固件版本的专属资源池上运行通过。 准备一台Linux aarch64架构的主机,操作系统使用ubuntu-18.04。您可以准备相同规格的弹性云服务器ECS或者应用本地已有的主机进行自定义镜像的制作。 购买ECS服务器的具体操作请参考购买并
个组织。创建组织的详细操作请参见创建组织。 同一个组织内的用户可以共享使用该组织内的所有镜像。 镜像会以快照的形式保存,保存过程约5分钟,请耐心等待。此时不可再操作实例(对于打开的JupyterLab界面和本地IDE仍可操作)。 快照中耗费的时间仍占用实例的总运行时长,如果在快照
实例规格 选择需要使用的规格。平台分配的资源规格包含了一定的系统损耗,实际可用的资源量小于规格标称的资源。实际可用的资源量可在资源池创建成功后,在详情页的“节点”页签中查看。 可用区 根据实际情况选择“随机分配”或“指定可用区”。可用区是在同一区域下,电力、网络隔离的物理区域。可用区之间内网互通,不同可用区之间物理隔离。
专属资源池支持打通用户的网络,在该专属资源池中运行的作业可以访问打通网络中的存储和资源。例如,在创建训练作业时选择打通了网络的专属资源池,训练作业创建成功后,支持在训练时访问SFS中的数据。 专属资源池支持自定义物理节点运行环境相关的能力,例如GPU/Ascend驱动的自助升级,而公共资源池暂不支持。
进入某条运行中的工作流,单击右上角的“停止”按钮,出现停止Workflow询问弹窗,单击确定。 只有处于“运行中”状态的工作流,才会出现“停止”按钮。 停止Workflow后,关联的训练作业和在线服务也会停止。 复制Workflow 某条工作流,目前只能存在一个正在运行的实例,如果用
服务部署、启动、升级和修改时,镜像不断重启如何处理? 问题现象 服务部署、启动、升级和修改时,镜像不断重启。 原因分析 容器镜像代码错误 解决方法 根据容器日志进行排查,修复代码,重新创建模型,部署服务。 父主题: 服务部署
Found secret key 原因分析 这是TensorFlow-1.8中会出现的情况,该日志是Info级别的,并不是错误信息,可以通过设置环境变量来屏蔽INFO级别的日志信息。环境变量的设置一定要在import tensorflow或者import moxing之前。 处理方法
有错误,提供的失败可能原因仅供参考。针对分布式作业,只会显示当前节点的一个分析结果,作业的失败需要综合各个节点的失败原因做一个综合判断。 常见训练问题定位思路如下: 根据日志界面提示中提供的分析建议解决。 参考案例解决:会提供当前故障对应的指导文档链接,请参照文档中的解决方案修复问题。