检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
包年/包月和按需计费模式哪个更划算 同一资源是否同时支持包年/包月和按需计费两种模式 包年/包月和按需计费模式是否支持互相切换 资源到期了如何续费
据分布。 训练过程中损失波动较大,甚至出现梯度爆炸。 模型在测试集上表现不佳,泛化能力差。 通过统计学方法如计算四分位距、Z-score、样本分布等排查异常值。 通过可视化方法,数据可视化或者使用箱线图进行异常值的排查。 结合数据自身特征,进行异常数据的筛选。 对于异常值,视情况
{conversation_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 项目ID,获取方法请参见获取项目ID。 agent_id 是 String Agent ID,获取方式如下: 在“Agent开发”页面,左侧导航栏选择“工作台
提示词写作实践 提示词写作常用方法论 提示词写作进阶技巧 提示词应用示例
说明 自监督学习 自监督学习(Self-Supervised Learning,简称SSL)是一种机器学习方法,它从未标记的数据中提取监督信号,属于无监督学习的一个子集。该方法通过创建“预设任务”让模型从数据中学习,从而生成有用的表示,可用于后续任务。它无需额外的人工标签数据,因为监督信号直接从数据本身派生。
据分布。 训练过程中损失波动较大,甚至出现梯度爆炸。 模型在测试集上表现不佳,泛化能力差。 通过统计学方法如计算四分位距、Z-score、样本分布等排查异常值。 通过可视化方法,数据可视化或者使用箱线图进行异常值的排查。 结合数据自身特征,进行异常数据的筛选。 对于异常值,视情况
盘古科学计算大模型调优实践 模型调优方法介绍 数据预处理优化 训练参数优化 评估模型效果 调优典型问题 父主题: 模型调优实践
盘古NLP大模型调优实践 模型调优方法介绍 优化训练数据的质量 优化训练超参数 优化提示词 优化推理超参数 调优典型问题 父主题: 模型调优实践
如果需要模型以某个人设形象回答问题,可以将role参数设置为system。不使用人设时,可设置为user。在一次会话请求中,人设只需要设置一次。 content 是 String 对话的内容,可以是任意文本,单位token。 设置多轮对话时,message中content个数不能超过20。
通过访问密钥(AK/SK)认证方式进行认证鉴权,即使用Access Key ID(AK)/Secret Access Key(SK)加密的方法来验证某个请求发送者身份。 父主题: 安全
提示词写作进阶技巧 设置背景及人设 理解底层任务 CoT思维链 考察模型逻辑 父主题: 提示词写作实践
误码,请参见API网关错误码进行处理。遇到“APIG”开头的错误码,请参考本文档进行处理。 表1 错误码 错误码 错误信息 说明 建议解决方法 PANGU.0001 unknown error. 未知错误。 请联系服务技术支持协助解决。 PANGU.0010 parameter illegal
横向比较提示词效果 设置候选提示词 横向比较提示词效果 父主题: 开发盘古大模型提示词工程
提示词比较支持选择两个候选提示词对其文本和参数进行比较,支持对选择的候选提示词设置相同变量值查看效果。 提示词评估 提示词评估以任务维度管理,支持评估任务的创建、查询、修改、删除。支持创建评估任务,选择候选提示词和需要使用的变量数据集,设置评估算法,执行任务自动化对候选提示词生成结果和结果评估。 提示词管理
本空间”页面,单击支持导出的模型名称,右上角的“导出模型”。 在“导出模型”页面,选择需要导出的模型,应设置导出模型时对应的导出位置(OBS桶地址),添加从环境B中下载的用户证书。设置完成后单击“确定”导出模型。 图2 导出模型 导入其他局点盘古大模型 导入盘古大模型前,请确保当前空间为该用户所创建的空间。
如果需要将该标注任务移交给其他人员,可以单击“移交”,并设置移交人员以及移交数量,单击“确定”。 进入标注页面后,逐一对数据进行标注。 一条数据标注完成后,单击“提交”可继续标注剩余数据。所有数据标注完成后,页面会出现标注任务成功的提示。 如果在创建标注任务时设置了“AI预标注 > 可部分标注”,则
配置OBS访问授权。 方式1:在首页顶部单击“此处”,在弹窗中选择授权项,并单击“确认授权”。 图1 配置OBS访问授权 方式2:单击首页右上角“设置”,在“授权管理”页签,单击“一键授权”。 父主题: 准备工作
Token认证 Content-Type application/json X-Auth-Token Token值,参考《API参考》文档“如何调用REST API > 认证鉴权 > Token认证”章节获取Token。 AppCode认证 Content-Type application/json
理精度,则全量微调是优先选择。 LoRA微调:适用于数据量较小、侧重通用任务的情境。LoRA(Low-Rank Adaptation)微调方法通过调整模型的少量参数,以低资源实现较优结果,适合聚焦于领域通用任务或小样本数据情境。例如,在针对通用客服问答的场景中,样本量少且任务场景
在左侧导航栏中选择“数据工程 > 数据管理 > 数据评估”,单击界面右上角“创建评估任务”。 选择需要评估的加工数据集,并设置抽样样本的数量。 单击“下一步”,选择评估标准。单击“下一步”设置评估人员,单击“下一步”填写任务名称。 单击“完成创建”,将返回至“数据评估”页面,评估任务创建成功后状态将显示为“已创建”。