检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
MRS Kafka输出流 功能描述 DLI将Flink作业的输出数据输出到Kafka中。 Apache Kafka是一个快速、可扩展的、高吞吐、可容错的分布式发布订阅消息系统,具有高吞吐量、内置分区、支持数据副本和容错的特性,适合在大规模消息处理场景中使用。MRS基于Apache
MRS Kafka输入流 功能描述 创建source流从Kafka获取数据,作为作业的输入数据。 Apache Kafka是一个快速、可扩展的、高吞吐、可容错的分布式发布订阅消息系统,具有高吞吐量、内置分区、支持数据副本和容错的特性,适合在大规模消息处理场景中使用。MRS基于Apache
通用队列操作OBS表如何设置AK/SK (推荐)方案1:使用临时AK/SK 建议使用临时AK/SK,获取方式可参见统一身份认证服务_获取临时AK/SK。 认证用的ak和sk硬编码到代码中或者明文存储都有很大的安全风险,建议在配置文件或者环境变量中密文存放,使用时解密,确保安全。 表1
增强型跨源连接绑定队列失败怎么办? 问题现象 客户创建增强型跨源连接后,在队列管理测试网络连通性,网络不通,单击对应的跨源连接查看详情,发现绑定队列失败,报错信息如下: Failed to get subnet 86ddcf50-233a-449d-9811-cfef2f603213
开源Kafka输入流 功能描述 创建source流从Kafka获取数据,作为作业的输入数据。 Apache Kafka是一个快速、可扩展的、高吞吐、可容错的分布式发布订阅消息系统,具有高吞吐量、内置分区、支持数据副本和容错的特性,适合在大规模消息处理场景中使用。 前提条件 Kaf
MRS Kafka输出流 功能描述 DLI将Flink作业的输出数据输出到Kafka中。 Apache Kafka是一个快速、可扩展的、高吞吐、可容错的分布式发布订阅消息系统,具有高吞吐量、内置分区、支持数据副本和容错的特性,适合在大规模消息处理场景中使用。MRS基于Apache
怎样升级DLI作业的引擎版本 DLI提供了Spark和Flink计算引擎,为用户提供了一站式的流处理、批处理、交互式分析的Serverless融合处理分析服务,当前,Flink计算引擎推荐版本:Flink 1.15,Spark计算引擎推荐版本: Spark 3.3.1。 本节操作介绍如何升级作业的引擎版本。
开源Kafka输出流 功能描述 DLI将Flink作业的输出数据输出到Kafka中。 Apache Kafka是一个快速、可扩展的、高吞吐、可容错的分布式发布订阅消息系统,具有高吞吐量、内置分区、支持数据副本和容错的特性,适合在大规模消息处理场景中使用。 前提条件 Kafka服务
开源Kafka输出流 功能描述 DLI将Flink作业的输出数据输出到Kafka中。 Apache Kafka是一个快速、可扩展的、高吞吐、可容错的分布式发布订阅消息系统,具有高吞吐量、内置分区、支持数据副本和容错的特性,适合在大规模消息处理场景中使用。 前提条件 Kafka服务
CloudTable HBase输入流 功能描述 创建source流从表格存储服务CloudTable的HBase中获取数据,作为作业的输入数据。HBase是一个稳定可靠,性能卓越、可伸缩、面向列的分布式云存储系统,适用于海量数据存储以及分布式计算的场景,用户可以利用HBase搭
Flink Jar 包冲突,导致作业提交失败 问题描述 用户Flink程序的依赖包与DLI Flink平台的内置依赖包冲突,导致提交失败。 解决方案 首先您需要排除是否有冲突的Jar包。 含DLI Flink提供了一系列预装在DLI服务中的依赖包,用于支持各种数据处理和分析任务。
深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano
时间序列预测 流数据处理中经常需要对于时间序列数据进行建模和预测,建模是指提取数据中有用的统计信息和数据特征,预测是指使用模型对未来的数据进行推测。DLI服务提供了一系列随机线性模型,帮助用户在线实时进行模型的建模和预测。 ARIMA (Non-Seasonal) ARIMA(Auto-Regressive
怎样将老版本的Spark队列切换成通用型队列 当前DLI服务包括“SQL队列”和“通用队列”两种队列类型。 其中,“SQL队列”用于运行SQL作业,“通用队列”兼容老版本的Spark队列,用于运行Spark作业和Flink作业。 通过以下步骤,可以将老版本的“Spark队列”转换为新的“通用队列”。
深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano
时间序列预测 流数据处理中经常需要对于时间序列数据进行建模和预测,建模是指提取数据中有用的统计信息和数据特征,预测是指使用模型对未来的数据进行推测。DLI服务提供了一系列随机线性模型,帮助用户在线实时进行模型的建模和预测。 ARIMA (Non-Seasonal) ARIMA(Auto-Regressive
CloudTable HBase输入流 功能描述 创建source流从表格存储服务CloudTable的HBase中获取数据,作为作业的输入数据。HBase是一个稳定可靠,性能卓越、可伸缩、面向列的分布式云存储系统,适用于海量数据存储以及分布式计算的场景,用户可以利用HBase搭
下载JDBC驱动包 操作场景 JDBC用于连接DLI服务,您可以在Maven获取JDBC安装包,或在DLI管理控制台下载JDBC驱动文件。 (推荐)方式一:在Maven获取JDBC安装包 单击DLI JDBC Driver中获取最新版本的JDBC安装包。 JDBC版本2.X版本功
作业语义检验时提示DIS通道不存在怎么处理? 处理方法如下: 登录到DIS管理控制台,在左侧菜单栏选择“通道管理”。检查Flink作业SQL语句中的DIS通道是否存在。 如果Flink作业中的DIS通道还未创建,请参见《数据接入服务用户指南》中“开通DIS通道”章节。 确保创建的
FileSystem结果表 功能描述 FileSystem sink用于将数据输出到分布式文件系统HDFS或者对象存储服务OBS等文件系统。适用于数据转储、大数据分析、备份或活跃归档、深度或冷归档等场景。 考虑到输入流可以是无界的,每个桶中的数据被组织成有限大小的Part文件。完