检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ECS中构建新镜像 通过ECS获取和上传基础镜像获取基础镜像后,可通过ECS运行Dockerfile文件,在镜像的基础上构建新镜像。 Step1 构建新ModelArts Standard训练镜像 获取模型软件包,并上传到ECS的目录下(可自定义路径),获取地址参考表1。 解压A
要联系华为云技术支持申请开通。 当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169.254.169.254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 SSH登录机器后,检查NPU卡状态。运行如下命令,返回NPU设备信息。
SampleLabels objects 视频在线服务推理结果。 service_id String 在线服务ID。 service_name String 在线服务名称。 service_resource String 用户绑定的在线服务资源ID。 total_sample_count
日志出现ECC错误,导致训练作业失败 超过最大递归深度导致训练作业失败 使用预置算法训练时,训练失败,报“bndbox”错误 训练作业进程异常退出 训练作业进程被kill 父主题: 训练作业
结果的准确性。 步骤5:清理资源 体验结束后,建议暂停或删除服务,避免占用资源,造成资源浪费。 停止在线服务:在“在线服务”列表,单击对应服务操作列的“更多 > 停止”。 删除在线服务:在“在线服务”列表,单击对应服务操作列的“更多 > 删除”。 父主题: 历史待下线案例
要联系华为云技术支持申请开通。 当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169.254.169.254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 SSH登录机器后,检查NPU卡状态。运行如下命令,返回NPU设备信息。
训练作业资源规格。 gpu_type String 资源规格gpu的类型。 create_time Long 训练作业参数创建时间 。 cpu String 资源规格CPU内存。 gpu_num Integer 资源规格gpu的个数。 core String 资源规格的核数。 dataset_name
H登录,不同机器之间网络互通。 当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169.254.169.254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 镜像版本 本教程中用到基础镜像地址和配套版本关系如下表所示,请提前了解。
您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个模型移动到GPU或CPU。例如,要将模型保存在CPU上。 quantized_model.save_pretrained("CodeLlama-34b-hf") tokenizer
操作三:鼠标悬浮在图片上的时间节点,可查看对应时间节点的占用率情况。 图1 资源占用情况 表1 参数说明 参数 说明 cpuUsage cpu使用率。 gpuMemUsage gpu内存使用率。 gpuUtil gpu使用情况。 memUsage 内存使用率。 npuMemUsage
指定挂载某个宿主机目录到容器环境。 docker run -ti -d -v /mnt/sfs_turbo:/sfs my_deeplearning_image:v1 上述命令表示把宿主机的"/mnt/sfs_turbo"目录挂载到容器的"/sfs"目录,在宿主机和容器对应目录的所有改动都是实时同步的。
1、执行权重量化过程中,请保证使用的GPU卡上没有其他进程,否则可能出现OOM; 2、若量化Deepseek-v2-236b模型,大致需要10+小时。 使用量化模型 使用量化模型需要在NPU的机器上运行。 启动vLLM前,请开启图模式(参考步骤六 启动推理服务中的配置环境变量),启动服务的命令和启动非量化模型一致。
1、执行权重量化过程中,请保证使用的GPU卡上没有其他进程,否则可能出现OOM; 2、若量化Deepseek-v2-236b模型,大致需要10+小时。 使用量化模型 使用量化模型需要在NPU的机器上运行。 启动vLLM前,请开启图模式(参考步骤六 启动推理服务中的配置环境变量),启动服务的命令和启动非量化模型一致。
1、执行权重量化过程中,请保证使用的GPU卡上没有其他进程,否则可能出现OOM; 2、如果量化Deepseek-v2-236b模型,大致需要10+小时。 使用量化模型 使用量化模型需要在NPU的机器上运行。 启动vLLM前,请开启图模式(参考步骤六 启动推理服务中的配置环境变量),启动服务的命令和启动非量化模型一致。
resource_categories Array of strings 镜像支持的规格。枚举值如下: CPU GPU ASCEND service_type String 镜像支持服务类型。枚举值如下: COMMON:通用镜像。 INFERENCE: 建议仅在推理部署场景使用。 TRAIN:
默认无限制,支持设置1~60000。 分钟 推理服务CPU规格使用时长(单节点为统计基础单元) 默认无限制,支持设置1~60000。 分钟 推理服务GPU规格使用时长(单节点为统计基础单元) 默认无限制,支持设置1~60000。 分钟 训练作业CPU规格训练核数 默认无限制,支持设置1~10000。
multi-lora特性不能和Chunked Prefill特性一起使用。 multi-lora特性使用说明 如果需要使用multi-lora特性,需要在推理服务启动命令中额外添加如下命令。 --enable-lora \ --lora-modules lora1=/path/to/lora/adapter1/
您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个模型移动到GPU或CPU。例如,要将模型保存在CPU上。 quantized_model.save_pretrained("CodeLlama-34b-hf") tokenizer
您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个模型移动到GPU或CPU。例如,要将模型保存在CPU上。 quantized_model.save_pretrained("CodeLlama-34b-hf") tokenizer
您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个模型移动到GPU或CPU。例如,要将模型保存在CPU上。 quantized_model.save_pretrained("CodeLlama-34b-hf") tokenizer