检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ECS中构建新镜像 通过ECS获取和上传基础镜像获取基础镜像后,可通过ECS运行Dockerfile文件,在镜像的基础上构建新镜像。 Step1 构建新ModelArts Standard训练镜像 获取模型软件包,并上传到ECS的目录下(可自定义路径),获取地址参考表1。 解压A
S的操作权限。 验证ECS权限。 在左上角的服务列表中,选择ECS服务,进入ECS管理控制台。 在ECS管理控制台,单击右上角的“购买弹性云服务器”,如果能正常打开页面,表示当前用户具备ECS的操作权限。 验证VPC权限。 在左上角的服务列表中,选择VPC服务,进入VPC管理控制台。
resource_categories Array of strings 镜像支持的规格。枚举值如下: CPU GPU ASCEND service_type String 镜像支持服务类型。枚举值如下: COMMON:通用镜像。 INFERENCE: 建议仅在推理部署场景使用。 TRAIN:
HTTP方法 方法 说明 GET 请求服务器返回指定资源。 PUT 请求服务器更新指定资源。 POST 请求服务器新增资源或执行特殊操作。 DELETE 请求服务器删除指定资源,如删除对象等。 HEAD 请求服务器资源头部。 PATCH 请求服务器更新资源的部分内容。 当资源不存在的
"flavor_id": "modelarts.vm.cpu.2u", "flavor_name": "Computing CPU(2U) instance", "flavor_type": "CPU", "billing": {
ECS中构建新镜像 通过ECS获取和上传基础镜像获取基础镜像后,可通过ECS运行Dockerfile文件,在镜像的基础上构建新镜像。 Step1 构建新ModelArts Standard训练镜像 获取模型软件包,并上传到ECS的目录下(可自定义路径),获取地址参考表1。 解压A
可以查看训练作业占用的CPU、GPU或NPU资源使用情况。具体请参见训练资源监控章节。 Standard在线服务:用户将模型部署为在线服务后,可以通过监控功能查看该推理服务的CPU、内存或GPU等资源使用统计信息和模型调用次数统计,具体参见查看推理服务详情章节。 方式二:通过AOM查看所有监控指标
com/atelier/mindspore_1_7_0:mindspore_1.7.0-cpu-py_3.7-ubuntu_18.04-x86_64-20221118143809-d65d817", "tag": "mindspore_1.7.0-cpu-py_3.7-ubuntu_18.04-x86_64
ECS中构建新镜像 通过ECS获取和上传基础镜像获取基础镜像后,可通过ECS运行Dockerfile文件,在镜像的基础上构建新镜像。 Step1 构建新ModelArts Standard训练镜像 获取模型软件包,并上传到ECS的目录下(可自定义路径),获取地址参考表1。 解压A
ECS中构建新镜像 通过ECS获取和上传基础镜像获取基础镜像后,可通过ECS运行Dockerfile文件,在镜像的基础上构建新镜像。 Step1 构建新ModelArts Standard训练镜像 获取模型软件包,并上传到ECS的目录下(可自定义路径),获取地址参考表1。 解压A
ECS中构建新镜像 通过ECS获取和上传基础镜像获取基础镜像后,可通过ECS运行Dockerfile文件,在镜像的基础上构建新镜像。 Step1 构建新ModelArts Standard训练镜像 获取模型软件包,并上传到ECS的目录下(可自定义路径),获取地址参考表1。 解压A
ECS中构建新镜像 通过ECS获取和上传基础镜像获取基础镜像后,可通过ECS运行Dockerfile文件,在镜像的基础上构建新镜像。 Step1 构建新ModelArts Standard训练镜像 获取模型软件包,并上传到ECS的目录下(可自定义路径),获取地址参考表1。 解压A
您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个模型移动到GPU或CPU。例如,要将模型保存在CPU上。 quantized_model.save_pretrained("CodeLlama-34b-hf") tokenizer
基本配置 权限配置 创建网络 专属资源池VPC打通 ECS服务器挂载SFS Turbo存储 在ECS中创建ma-user和ma-group obsutil安装和配置 (可选)工作空间配置 父主题: 专属资源池训练
ECS中构建新镜像 通过ECS获取和上传基础镜像获取基础镜像后,可通过ECS运行Dockerfile文件,在镜像的基础上构建新镜像。 Step1 构建新ModelArts Standard训练镜像 获取模型软件包,并上传到ECS的目录下(可自定义路径),获取地址参考表1。 解压A
打开”,打开Notebook实例。 ModelArts Lite DevServer 开通裸金属服务器资源请见DevServer资源开通,在裸金属服务器上搭建迁移环境请见裸金属服务器环境配置指导。 父主题: GPU推理业务迁移至昇腾的通用指导
可以选择的最大节点数量(max_num,为1代表不支持分布式)。 cpu cpu object cpu规格信息。 gpu gpu object gpu规格信息。 npu npu object Ascend规格信息。 memory memory object 内存信息。 表39 cpu 参数 参数类型 描述 arch
了图像分类,11:30:00完成了服务部署,并在12:00:00停止运行在线服务。同时,使用公共资源池运行实例,模型训练时选择资源池规格为CPU: 8 核 32GB、计算节点个数为1个(单价:3.40 元/小时);服务部署时选择资源池规格为CPU: 8 核 32GB、计算节点个数为1个(单价:3
ECS中构建新镜像 通过ECS获取和上传基础镜像获取基础镜像后,可通过ECS运行Dockerfile文件,在镜像的基础上构建新镜像。 Step1 构建新ModelArts Standard训练镜像 获取模型软件包,并上传到ECS的目录下(可自定义路径),获取地址参考表1。 解压A
默认无限制,支持设置1~60000。 分钟 推理服务CPU规格使用时长(单节点为统计基础单元) 默认无限制,支持设置1~60000。 分钟 推理服务GPU规格使用时长(单节点为统计基础单元) 默认无限制,支持设置1~60000。 分钟 训练作业CPU规格训练核数 默认无限制,支持设置1~10000。